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Who are we?

Ÿ Geoffrey Stewart Morrison

Ÿ Director, Forensic Data Science Laboratory, Aston University

– forensic inference and statistics

– calibration and validation of likelihood-ratio systems

– forensic voice comparison, fired cartridge case comparison

– cell-site analysis, fingermark-fingerprint comparison

Ÿ Chair, Forensic Science Committee, British Standards Institution

– contributor to ISO21043 Forensic Science, particularly Part 4 Interpretation

Ÿ  http://geoff-morrison.net/   http://forensic-data-science.net/
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Who are we?

Ÿ William Morris

Ÿ Senior Lecturer in Forensic Science, Nottingham-Trent University

– fingermark detection and fingerprint identification

– footwear marks detection and identification

– forensic inference covering fingerprint evidence

Ÿ Forensic Trainer, College of Policing (2014–2017)

Ÿ Entered on the National Register of Fingerprint Experts (2003–2017)

Ÿ https://www.ntu.ac.uk/staff-profiles/science-technology/william-morris
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Who are we?

Ÿ We are developing an R&D project on calculation, calibration, and validation of 

likelihood ratios for fingermark-fingerprint comparison

Ÿ Includes collection of a database of fingerprint and fingermark images

Ÿ We will be applying for funding

Ÿ We will be seeking collaboration with partner organization
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What is a likelihood ratio?
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What is a likelihood ratio?

Ÿ Likelihood of obtaining the properties of the questioned-source fingermark and the 

known-source fingerprint if they both came from the same finger (similarity).

divided by

Ÿ Likelihood of obtaining the properties of the questioned-source fingermark and the 

known-source fingerprint if they came from two different fingers in the relevant 

population (typicality).
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What is Calibration?
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What is Calibration?

Ÿ What is a well-calibrated set of scales?

Ÿ A set of scales for which:

Ÿ The mass stated in the readout is the same as 

the mass placed on the scale
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What is Calibration?

Ÿ Calibration is the process of 

adjusting the set of scales so 

that its output is well calibrated.
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What is Calibration?

Ÿ What is a well-calibrated likelihood-ratio system?

Ÿ A system for which:

Ÿ The likelihood ratio of the likelihood ratio is the 

likelihood ratio
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What is Calibration?
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Ÿ Calibration is the process of 

adjusting the system so that 

its output is well calibrated, 

i.e., so that:

LR =  
f ( LR | H  )s

f ( LR | H  )d

_________
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Regulator’s Appendix
on Evaluative Opinions
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Ÿ Forensic Science Regulator (2021). Codes of practice and conduct: Development of 

evaluative opinions (FSR-C-118 Issue 1). Birmingham, UK: Forensic Science 

Regulator. https://www.gov.uk/government/publications/development-of-evaluative-

opinions 

Ÿ Will not be included in the first version of the Statutory Codes

Ÿ But will be revised for inclusion in a later version

Regulator’s Appendix on Evaluative Opinions



18

Regulator’s Appendix on Evaluative Opinions

“probabilities have been assigned on the basis of a data set of sufficient relevance, 

quality and size”

“probabilities have been assigned on the basis of structured data set(s) which are 

limited in their relevance, quality and/or size but are available for inspection by 

another expert”

“probabilities have been assigned on the basis of unstructured observations from 

experience, which are not available for inspection by another expert”
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Regulator’s Appendix on Evaluative Opinions

“probabilities have been assigned on the basis of a data set of sufficient relevance, 

quality and size”
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Regulator’s Appendix on Evaluative Opinions

questioned-source feature vector(s)
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Regulator’s Appendix on Evaluative Opinions

Ÿ Important condition:

Ÿ The data used for training the calibration model must: 

Ÿ represent the relevant population in the case

Ÿ including there being enough data

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ including any mismatches in conditions

Ÿ If not, the system will be miscalibrated
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Regulator’s Appendix on Evaluative Opinions

Ÿ Important condition:

Ÿ The first model must output scores which are uncalibrated log likelihood ratios. 

They must take account of both:

Ÿ the similarity between the questioned-source and the known-source items

Ÿ their typicality with respect to the relevant population

Ÿ Similarity-only scores cannot be used
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Regulator’s Appendix on Evaluative Opinions

 

“probabilities have been assigned on the basis of structured data set(s) which are 

limited in their relevance, quality and/or size but are available for inspection by 

another expert”
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Ÿ “The validity of a structured data set (including any local data set) from previous 

casework, a ‘knowledge base’ ..., shall be calibrated regularly by conducting studies 

using ground truth data as described by Evett [22].”

Ÿ  “Knowledge Base 

A structured database of information and assigned probabilities, ordered according to 

casework conditions. The knowledge base is calibrated through regular review of its 

content through experimentation under controlled conditions [22].” 

Regulator’s Appendix on Evaluative Opinions
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Ÿ “Calibration involves regular review of sections of the content by conducting 

experimentation using ground truth data under controlled conditions and comparing to 

relevant sections of the knowledge base. 

Ÿ Such ground truth experimentation enables the knowledge base to be updated and expert 

opinions to be checked against a snapshot of known-source data.”  

Regulator’s Appendix on Evaluative Opinions
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[22] Evett I.W. (2015). The logical foundations of forensic science: Towards reliable 

knowledge. Philosophical Transactions of the Royal Society B, 370, article 20140263. 

http://dx.doi.org/10.1098/rstb.2014.0263

Ÿ This is a high-level review paper.

Ÿ It does not provide detail about how to:

– calibrate a knowledge base

– use a knowledge base to assign probabilities in the context of a case

Regulator’s Appendix on Evaluative Opinions
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Regulator’s Appendix on Evaluative Opinions

  

 

“probabilities have been assigned on the basis of unstructured observations from 

experience, which are not available for inspection by another expert”
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Ÿ “In instances where an expert is unable to demonstrate any ... calibration of their 

expertise, the commissioning party and the court shall be made aware that their 

opinion is uncalibrated. ” 

Regulator’s Appendix on Evaluative Opinions

questioned-source item

known-source item(s)

experience

human perception and judgement

uncalibrated
likelihood ratio
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Regulator’s Appendix on Evaluative Opinions

questioned-source item

known-source item(s)

experience

score

human perception and judgement

test score

same-source scores

different-source scores

calibrated log
likelihood ratio

score to log likelihood ratio model



30

Regulator’s Appendix on Evaluative Opinions
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Regulator’s Appendix on Evaluative Opinions

Ÿ Important condition:

Ÿ The data used for training the calibration model must: 

Ÿ represent the relevant population in the case

Ÿ including there being enough data

Ÿ reflect the conditions of the questioned-source and known-source items in the case

Ÿ including any mismatches in conditions

Ÿ If not, the system will be miscalibrated
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Quantitative-Measurement
& Statistical-Model Approach
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Quantitative-Measurement & Statistical-Model Approach
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Ÿ Pipeline based on state-of-the-art forensic voice comparison
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Quantitative-Measurement & Statistical-Model Approach
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Ÿ Feature-extraction using a Deep-Neural-Network (DNN) embedding

Ÿ Engelsma J.J., Cao K., Jain A.K. (2021). Learning a fixed-length fingerprint representation. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 43, 1981–1997. https://doi.org/10.1109/TPAMI.2019.2961349

Quantitative-Measurement & Statistical-Model Approach
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Ÿ The quantitative-measurement & statistical-model system is a tool used by a human 

expert.

Ÿ Human expertise is required: 

Ÿ Selection of appropriate data (fingermark and fingerprint images) for calibrating and 

validating the system under conditions reflecting those of the fingermark and 

fingerprint from the case.

Ÿ Otherwise: Garbage in, garbage out.

Ÿ Communicating the meaning of the output.

Quantitative-Measurement & Statistical-Model Approach
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Ÿ For training, calibration, and validation we need data: 

Ÿ Fingermarks and fingerprints from a large number of donors

Ÿ Fingermarks representing conditions commonly encounter in casework

Ÿ In each condition, a large number of fingermarks from each donor

Ÿ Model between-source and within-source variability in casework-relevant conditions

Quantitative-Measurement & Statistical-Model Approach
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Calibration of Human
Perception & Judgement
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Calibration of Human-Perception & Judgement
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Ÿ Human examiner output:

Ÿ identification - inconclusive - exclusion

Ÿ five/seven/nine-level ordinal scale 

– e.g., draft ASB 013 Standard for Friction Ridge Examination Conclusions

Ÿ subjectively assigned numerical likelihood ratio  

– e.g., ENFSI Guideline for Evaluative Reporting in Forensic Science

Calibration of Human-Perception & Judgement
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Calibration of Human-Perception & Judgement

p( “identification” | H  )same-source

p( “identification” | H  )different-source
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Ÿ Morrison G.S. (2022). A method to convert traditional fingerprint ACE / ACE-V 

outputs (“identification”, “inconclusive”, “exclusion”) to Bayes factors. 

Unpublished Manuscript. https://geoff-morrison.net/#ID_IN_EX_to_BF

Ÿ Busey T., Coon M. (2023). Not all identification conclusions are equal: Quantifying 

the strength of fingerprint decisions. Forensic Science International, 343, 111543. 

https://doi.org/10.1016/j.forsciint.2022.111543

Calibration of Human-Perception & Judgement
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Calibration of Human-Perception & Judgement

Ÿ For calibration and validation we need data: 

Ÿ Fingermarks and fingerprints from a large number of donors

Ÿ Fingermarks representing conditions commonly encounter in casework

Ÿ In each condition, a large number of fingermarks from each donor
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Calibration of Human-Perception & Judgement

Ÿ The system that is actually to be used for the case is the system that must be calibrated 

and validated: 

Ÿ Individual examiner

Ÿ Pair of examiners conducting ACE-V

Ÿ The system must be calibrated and validated under conditions reflecting each of the cases 

to which it is to be applied.
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Calibration of Human-Perception & Judgement

Ÿ In each condition, the system must provide responses to a large number of fingermark-

fingerprint pairs.

Ÿ The size of the calibrated likelihood-ratio value (how far it is from 1) will be constrained 

by the number of fingermark-fingerprint pairs that the system provides responses for.

Ÿ We can use cross-validation, so the responses provided for calibration can also be used for 

validation. 
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Comparison and Fusion
of Systems
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Comparison and Fusion of Systems

Ÿ Have quantitative-measurement & statistical-model system and human perception & 

judgement system each provide responses to the same fingermark-fingerprint pairs.

Ÿ Build a model that fuses the responses from the two systems.

– the process is similar to calibration, but takes parallel input from two or more systems

Ÿ Compare the performance of the individual systems with each other and with the fused 

system.

– log likelihood ratio cost (C )llr

– Tippett plots
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Verbal Scales



49

Verbal Scales

Ÿ  Association of Forensic Science Providers (2009). Standards for the formulation of evaluative 

forensic science expert opinion. Science & Justice, 49, 161–164. 

http://dx.doi.org/10.1016/j.scijus.2009.07.004

Ÿ Willis S.M., McKenna L., McDermott S., O’Donell G., Barrett A., Rasmusson A., Nordgaard A., 

Berger C.E.H., Sjerps M.J., Lucena-Molina J.J., Zadora G., Aitken C.G.G., Lunt L., Champod 

C., Biedermann A., Hicks T.N., Taroni F. (2015). ENFSI Guideline for Evaluative Reporting 

in Forensic Science. http://enfsi.eu/wp-content/uploads/2016/09/m1_guideline.pdf

Ÿ AAFS Standards Board (2021). ASB 013 Standard for Friction Ridge Examination Conclusions 

[draft]. https://www.aafs.org/sites/default/files/media/documents/013_Std_Ballot02.pdf
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Verbal Scales

Ÿ  Expression on verbal scales have no intrinsic meaning

Ÿ moderately strong

Ÿ Calibrated numerical likelihood ratios do have intrinsic meaning

Ÿ propositions must be clearly stated
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Conclusion
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Conclusion

Ÿ  Collect relevant data

Ÿ fingerprints and fingermark that reflect casework conditions

Ÿ sufficient quantity to capture between-source and within-source variability

Ÿ Develop quantitative-measurement & statistical-model systems that are calibrated and 

validated under casework conditions

Ÿ Calibrate and validated human-perception & judgement under casework conditions
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Thank You
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