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Specific-Source Likelihood Ratio
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Specific-source likelihood ratio

Ÿ What is the likelihood of obtaining the measured properties of the item of 

questioned source if ?it came from the specific known source

divided by

Ÿ What is the likelihood of obtaining the measured properties of the item of 

questioned source if it came not from the specific known source but from some 

other source selected at random from the relevant population?
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Specific-source likelihood ratio
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Common-Source Likelihood Ratio
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Ÿ What is the likelihood of obtaining the measured properties of the items of 

questioned and known source if  (a source they both came from the same source

selected at random from the relevant population)?

divided by

Ÿ What is the likelihood of obtaining the measured properties of the items of 

questioned and known source if  (each a they each came from a different source

source selected at random from the relevant population)?

Common-source likelihood ratio
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Common-source likelihood ratio
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Common-source likelihood ratio
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Common-source likelihood ratio

xq

xk

3

0.05

2

0.1

p
ro

b
a

b
ili

ty
 d

e
n

si
ty

1

0.15

0.2

0

-1

-2

32-3 10-1-2-3



14

Ÿ   x  = −1     x  = 1     q k

Ÿ x  = 19     x  = 21     q k
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Ÿ x  = 19     x  = 21     q k
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Similarity-Score-Based Likelihood Ratio
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Ÿ What is the likelihood of obtaining the measured degree of similarity between 

the items of questioned and known source if  they both came from the same

source (a source selected at random from the relevant population)?

divided by

Ÿ What is the likelihood of obtaining the measured degree of similarity between 

the items of questioned and known source if they each came from a different 

source (each a source selected at random from the relevant population)?

Similarity-score-based likelihood ratio
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Similarity-score-based likelihood ratio

Ÿ degree of similarity is the inverse of degree of difference 
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Ÿ   x  = −1     x  = 1     q k

Ÿ x  = 19     x  = 21     q k

-30 -20 -10 0 10 20 30

x

0

0.01

0.02

0.03

0.04

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Ÿ μ  = 0r

2Ÿ σ  = 100b

2Ÿ σ  = 1w

Similarity-score-based likelihood ratios – same degree of similarity



20

q k
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Common-Source Likelihood Ratio

v

Similarity-Score-Based Likelihood Ratio
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Ÿ   x  = −1     x  = 1     q k

Ÿ x  = 19     x  = 21     q k
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Conclusion and Comments
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Ÿ Similarity-score-based likelihood ratios do not properly take account of 

typicality.

Ÿ Similarity-score-based likelihood ratios should not be used.

Ÿ Common-source likelihood ratios should be used instead.

Conclusion



25

Ÿ Similarity scores are not a legitimate alternative “evidence” to features.

Ÿ Similarity scores are derived from features.

Ÿ The features are the “evidence”.

Comments
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Ÿ Calculating likelihood ratios from similarity scores is not the same as calibration.

Ÿ Calibration converts uncalibrated likelihood ratios to calibrated likelihood ratios.

Ÿ Logarithms of uncalibrated likelihood ratios are referred to as “scores”, but these 

scores take account of both similarity and typicality. 

Comments
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Ÿ Using simulations, Morrison & Enzinger (2018) compared similarity-score-

based models with specific-source models. The comparison should have been 

with common-source models.

Ÿ Using real data, Morrison & Enzinger (2018) demonstrated that methods that 

take account of both similarity and typicality outperform methods that only take 

account of similarity.

Comments

Morrison G.S., Enzinger E. (2018). Score based procedures for the calculation of forensic likelihood ratios – 

Scores should take account of both similarity and typicality. Science & Justice, 58, 47–58. 

https://doi.org/10.1016/j.scijus.2017.06.005



28

Ÿ For almost two decades, automatic speaker recognition and forensic voice 

comparison have successfully applied common-source models to high-

dimensional data.

Comments

Morrison G.S., Enzinger E., Ramos D., González-Rodríguez J., Lozano-Díez A. (2020). Statistical models in forensic voice 

comparison. In Banks D.L., Kafadar K., Kaye D.H., Tackett M. (Eds.), Handbook of Forensic Statistics (Ch. 20, pp. 

451–497). Boca Raton, FL: CRC. https://doi.org/10.1201/9780367527709

Preprint at https://forensic-voice-comparison.net/handbook-of-forensic-statistics/

Morrison G.S., Weber P., Enzinger E., Labrador B., Lozano-Díez A., Ramos D., González-Rodríguez J. (2023). Forensic voice 

comparison: Human-supervised-automatic approach. In Houck M., Wilson L., Eldridge H., Lewis S., Lothridge K., 

Reedy P. (Eds.), Encyclopedia of Forensic Sciences (3rd Ed.), vol. 2, pp. 720–736. Elsevier. 

https://doi.org/10.1016/B978-0-12-823677-2.00182-3

Preprint at https://forensic-voice-comparison.net/encyclopedia/
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Thank You
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