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A method to convert traditional fingerprint ACE / ACE-V outputs

(“identification”, “inconclusive”, “exclusion”) to Bayes factors

Abstract

Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical
models, and empirical validation. The rate of adoption of the likelihood-ratio
framework by fingerprint practitioners appears to be near zero. A factor in the
reluctance to adopt the likelihood-ratio framework may be a perception that it would
require a radical change in practice. The present paper proposes a small step that would
require minimal changes to current practice. It proposes and demonstrates a method to
convert traditional fingerprint-examination outputs (“identification”, “inconclusive”,
and “exclusion”) to well-calibrated Bayes factors. The method makes use of a beta-

binomial model, and both uninformative and informative priors.
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Bayes factor; Calibration; Evidence; Fingerprint; Interpretation; Likelihood ratio
Abbreviations

ACE — analysis, comparison, and evaluation

ACE-V - analysis, comparison, evaluation, and verification

ASB —Academy Standards Board (American Academy of Forensic Sciences)

B — Bayes factor

¢ —count
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d — different source

DFSC — Defense Forensic Science Center of the United States Department of the Army
ENFSI — European Network of Forensic Science Institutes
EX —exclusion

ID — identification

IN — inconclusive

A — likelihood ratio

m — pseudo number of fingermark-fingerprint pairs

n — number of fingermark-fingerprint pairs

0 — probability

RS — response

S — same source

t — truth

1 Introduction

Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical
models, and empirical validation (Cole [1], [2]; Mnookin et al. [3]; Curran [4];
Morrison & Stoel [5]; Swofford et al. [6]). The rate of adoption of the likelihood-ratio
framework by fingerprint practitioners appears to be near zero (Bali et al. [7]; Cole &

Barno [8]). A factor in the reluctance to adopt the likelihood-ratio framework may be
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a perception that it would require a radical change in practice. The present paper makes
a proposal that would require minimal changes to current practice. It proposes a method

to convert traditional fingerprint-examination outputs to well-calibrated Bayes factors.!

In current fingerprint-examination practice, conclusions are most commonly reported
as “identification” (or “individualization™), “exclusion”, or “inconclusive” (Expert
Working Group on Human Factors in Latent Print Analysis [9]; Cole [2]; Thompson
et al. [10]; Forensic Science Regulator [11]). Traditionally, “identification”
corresponds to a posterior probability of 1 and “exclusion” to a posterior probability of
0, with “inconclusive” as a no-conclusion option rather than a probabilistic value

between 0 and 1.

Proposals have been made that keep the terms “identification” and “exclusion”, but
state them as the examiner’s opinion, rather than as facts, and redefine them to mean
probabilities very very close to but not exactly 1 and 0, e.g., United States Department
of Justice [12]: “‘Source identification’ is an examiner’s conclusion that two friction
ridge skin impressions originated from the same source. ... A ‘source identification’ is
the statement of an examiner’s opinion ... that the probability that the two impressions
were made by different sources is so small that it is negligible.” This approach has been
criticized in Expert Working Group on Human Factors in Latent Print Analysis [9] pp.
72-73, Cole [2], and Thompson et al. [10] pp. 60-62. The difference between the
original and revised definitions is negligible, and, without a change in nomenclature,
triers of fact and others are likely to continue interpreting “identification” and
“exclusion” on face value, i.e., as probabilities of 1 and 0. Knowing that a fingerprint
examiner’s opinion is that the mark and print came from the same source is of little
value unless one knows the probability that the practitioner would opine that the mark
and print came from the same source if they really did come from the same source

versus the probability that the practitioner would opine that the mark and print came

! Bayes factors are the Bayesian analogues of likelihood ratios.



69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

ID-IN-EX to BF manuscript - 2022-08-26b Page 6 of 29

from the same source if they actually came from different sources (President’s Council

of Advisors on Science and Technology [13]; Morrison et al. [14]).

Proposals have also been made to move away from the three-level (“identification”,
“inconclusive”, “exclusion’) opinion scale and adopt ordinal opinion scales with more
levels, e.g., in the most recent publicly released (November 2021) draft of the ASB 013
Standard for Friction Ridge Examination Conclusions.? That draft claims to have a 5-
level opinion scale, but it actually has 9 levels. The levels are labelled: “source
identification”, “inconclusive with similarities”, “inconclusive”, “inconclusive with
dissimilarities”, and “source exclusion”, but each of “inconclusive with similarities”
and “inconclusive with dissimilarities” is further divided into “weak”, “moderate”, and
“strong”. The levels of the draft opinion scale are associated with verbal expressions
of degree of support for the same-source hypothesis relative to degree of support for
the different-source hypothesis, e.g., “the observed data provide more support for the
proposition that the impressions originated from different sources rather than the same
source”. On their face, these “support” statements appear to be expressions of posterior
odds, but additional wording, e.g., “the examiner believes the observed data are more
probable if the impressions have different sources than the same source” suggests that
they are intended to be verbal expressions of likelihood ratios. The highest and lowest
levels of the opinion scale are, however, still labelled “identification” and “exclusion”.
How an examiner is to evaluate strength of evidence in a way that would lead to the
selection of the appropriate level on the opinion scale is vague: “An examiner may
utilize their knowledge, training, and experience as well as a statistical model”.® The
ASB 013 draft has flaws, but it is clearly an attempt to move away from only stating
conclusions that are qualitative expressions of posterior probabilities that are (or are

very very close to) either 1 or 0. It is too early to tell whether there will be major

2 https://www.aafs.org/sites/default/files/media/documents/013_Std_Ballot02.pdf

% In a standard, a sentence with “may” gives permission. This sentence therefore states what examiners are permitted to

do, not what they are recommended or required to do.
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changes between the current draft and the final version of ASB 013, or whether the

final version will be widely adopted by examiners.

The European Network of Forensic Science Institutes (ENFSI) Guideline for
Evaluative Reporting in Forensic Science [15] recommends that forensic practitioners
subjectively assign a number between 0 and 1 for the numerator of a likelihood ratio,
subjectively assign a number between 0 and 1 for the denominator, then divide the
former by the latter. The ENFSI Guideline recommends that forensic practitioners
report the subjectively assigned numerical likelihood-ratio value and/or a
corresponding verbal expression from an ordinal opinion scale. Each level on the
opinion scale is associated with a range of numerical likelihood-ratio values, and each
level has an associated verbal expression of relative degrees of support for the
hypotheses and an associated verbal expression of a likelihood ratio. For example, the
numerical likelihood-ratio range 100-1000 is associated with the following verbal
expressions: “The forensic findings provide moderately strong support for the first
proposition relative to the alternative.” “The forensic findings are appreciably more
probable given one proposition relative to the other.” The ENFSI Guideline
recommends that a numerical likelihood-ratio value be subjectively assigned first and
that it then be converted to a verbal expression from a level on the ordinal opinion scale,
not the other way around.* The recommendations of the ENFSI Guideline do not
appear to have been widely adopted by fingerprint examiners. Reporting of
uncalibrated and unvalidated subjective assignment of likelihood-ratio values has been

criticized in Thompson et al. [10] p. 65 and in Morrison et al. [18].

In 2017, the Defense Forensic Science Center (DFSC) of the United States Department
of the Army proposed that fingerprint examiners state their conclusions as subjectively-

assigned numerical likelihood-ratio values based on degree of correspondence between

4 If, instead of subjective assignment of a likelihood-ratio value, a likelihood-ratio value is calculated using relevant data,
guantitative measurement, and statistical models, Marquis et al. [16], quoting Berger et al. [17], recommend that only the

calculated number be reported.
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the questioned-source fingermark and the known-source fingerprint: “The probability
of observing this amount of [corresponding ridge detail] is approximately ## times
greater when impressions are made by the same source rather than by different
sources.” In Swofford et al. [19], members of DFSC (in collaboration with others)
also proposed “FRStat”, a method for providing “statistical assessment of the strength
of fingerprint evidence” based on similarity scores calculated from comparisons of
minutiae annotations. FRStat has a passing resemblance to methods for calculating
likelihood-ratio values, but it calculates tail probabilities for similarity scores, not
likelihood ratios. The flaws with this approach are comprehensively described in
Neumann [20]. Results from FRStat and reporting using DFSC’s wording have been
tendered as evidence in US military courts and in at least one civilian case (Neumann
[20]; Swofford et al. [21]).

Part of the reluctance to adopt the likelihood-ratio framework for evaluation of forensic
evidence may be because of the perception that it would require a radical change in
practice. The present paper proposes a small step that would require minimal changes
to current practice. In this proposal, fingerprint examiners continue with their existing
practice and state ACE or ACE-V outputs as “identification”, “inconclusive”, or
“exclusion”. Those outputs are subsequently converted to well-calibrated Bayes factors
using a statistical model. The model is trained using data which consist of fingerprint
examiners’ “identification”, “inconclusive”, and “exclusion” responses to fingermark-
fingerprint pairs for which the true same-source or different-source status in known.
The statistical model could be applied to the output of an ACE process conducted by a
single fingerprint examiner, or could be applied to the output of an ACE-V process to
which two fingerprint examiners contribute. The present paper demonstrates use of the
statistical model for the ACE output of individual examiners. A separate model is
trained for each fingerprint examiner. The model is therefore calibrated to reflect the

strength of evidence associated with that fingerprint examiner stating each of the three

> Quoted from Neumann [20].
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outputs.

The scope of the present paper is modest. It describes and demonstrates a statistical
model as a proof of concept, and it discusses some considerations with respect to what

would be needed to transition the method into practice.

2 Methodology
2.1 Data

The data used for the proof of concept are taken from Langenburg et al. [22].
Participants gave “identification”, “inconclusive”, or “exclusion” responses to each of
12 fingermark-fingerprint pairs (7 same-source pairs and 5 different-source pairs). The

fingermark-fingerprint pairs were selected to be challenging.

Each participant was assigned to one of six groups. For the present study, we make use
of data from participants in Group 1, the control group, who performed their
examination as usual without being supplied with additional “tools”. For the present
paper, data from participants who were not practicing fingerprint examiners have been

excluded, leaving data from 24 participants.

For the purposes of the present paper, it is assumed that the fingermark-fingerprint
pairs in Langenburg et al. [22] all represented the same set of conditions, hence a
statistical model trained using these data can be generalized for use with other
fingermark-fingerprint pairs that also have that set of conditions. The conditions for a
case involve the quality of the fingermark and the quality of the fingerprint, but if
fingerprints are high-quality it is the quality of the fingermark that will be key in
defining the conditions for the case. Deciding whether data used for training (including
calibration) and for validation are sufficiently reflective of the conditions of a case

requires a subjective judgement which requires subject-area expertise, see the
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Consensus on Validation of Forensic VVoice Comparison (Morrison et al. [23]).
2.2 A likelihood-ratio model

Table 1 lists the symbols that that will be used to represent counts of each potential
response to each truth value, i.e., counts of “identification”, “inconclusive”, or
“exclusion” in response to Whether fingermark-fingerprint pairs were same-source or
different-source pairs. The symbol c¢ represents a count, subscripts s and d
represent the truth as to whether the pair was a same-source pair or a different-source
pair respectively, and subscripts ID, IN, and EX represent whether an examiner’s
response was “identification”, “inconclusive”, or “exclusion” respectively. ns and ny

represent the number of same-source pairs and different-source pairs respectively. In

the Langenburg et al. (2012) data ng="7 and n4=>5.

Table 1. Symbols for counts of “identification”, “inconclusive”, or ‘“exclusion”
outputs in response to whether fingermark-fingerprint pairs were same-source or

different-source pairs.

Response Number of pairs
identification inconclusive exclusion
same source c(IDJs) C(INJs) C(EX|s) s
Truth
different source ¢(ID|d) C(IN|d) C(EX|d) ng

Given the response counts for an examiner, a likelihood-ratio value associated with
each response category could be calculated as in Equation (1), in which A represents
a likelihood ratio, @ is an estimated probability value, and subscript RS (response) is
a placeholder for ID, IN, or EX (RS = {ID,IN, EX}). The likelihood-ratio value is
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calculated as the proportion of responses that are a particular response when the pair is
a same-source pair divided by the proportion of responses that are that particular

response when the pair is a different-source pair.
(1)

O(Rsls) _ C(RSls)/Ms
Ags = = =

ORSId)  C(RS|d)/Ma

The responses are considered a sample of the population of potential responses, i.e., a
population defined as all the responses that the examiner could potentially give to all
fingermark-fingerprint pairs that have the same set of conditions (see 82.1). The sample
Is used to provide an estimate for what the likelihood-ratio value would be if one were
able to calculate it using the entire population of data, i.e., it is an estimate of the
examiner’s theoretical underlying “true” performance under the tested conditions. A
problem occurs, however, when the amount of sample data is small. For example, if an
examiner responded “identification” to 1000 out of 10,000 different-source pairs then
one would be confident that that practitioner’s “true” false-alarm rate was very close
to 10%. If an examiner responded “identification” to 1 out of 10 different-source pairs
then one’s best estimate for that practitioner’s “true” false-alarm rate would be 10%,
but one would have a lot of uncertainty about how close that estimate was to that
examiner’s “true” false-alarm rate. Another problem which occurs with small sample
sizes is the high probability of obtaining a zero count, e.g., if the “true” false-alarm rate
were 1% and the sample size were 10, then the probability of obtaining a zero count
from a sample would be high. If there were a zero count in the numerator in Equation
(1) then the calculated likelihood-ratio value would be 0, and if there were a zero count
in the denominator then the calculated likelihood-ratio value would be infinite. A
solution to these problems is to adopt a Bayesian approach and calculate a Bayes factor

instead of a likelihood ratio (see §2.3).

2.3 A Bayes-factor model
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Philosophically, in a frequentist approach, one attempts to calculate a probability or
likelihood value that is an estimate of a true but unknown value. In contrast, in a
Bayesian approach, probabilities and likelihoods are states of belief. A Bayesian begins
with a belief about the value of a statistical parameter of interest, observes sample data,
and based on the sample data they update their belief about the value of that parameter.
A rigorous Bayesian will justify their prior belief and will have prespecified the model
that they will use for representing and updating their belief (Jaynes [24] p. 373). If
others accept the justification for the prior and choice of model as reasonable then they
should also be willing to adopt for themselves the posterior belief about the parameter
value. The posterior is the result of a mixture of the prior and the sample data. If the
amount of sample data is large, the posterior depends heavily on the sample data, but
If the amount of sample data is small, the weight that the sample data contribute to the
posterior is less. If the amount of sample data is small, the weight contributed by the
prior is higher relative to the weight it contributes if the amount of sample data is large.
This provides a solution to the problems described above with respect to small sample

sizes. The priors, however, must be chosen and justified.

Priors can be “informative” or “uninformative”. Informative priors can be based on
existing relevant information. For example, if the performance of a fingerprint
examiner has not been previously tested under the conditions of interest, then a
reasonable informative prior could be based on the assumption that this examiner’s
performance is the same as the average of that of all examiners who have already been
tested under these particular conditions. Alternatively, if the performance of a
fingerprint examiner has not been previously tested under the conditions of interest but
the examiner has been tested under somewhat similar conditions, then a reasonable
informative prior could be based on the assumption that the examiner’s performance
on these particular conditions will be the same their performance on the somewhat
similar conditions under which they have already been tested. If no relevant
information is available, then an uninformative prior would be a reasonable choice. In

may be argued that no prior is completely uninformative, but there are relatively
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uninformative “reference” priors (e.g., Jeffreys’ reference priors) whose use is

uncontroversial (Jeffreys [25]; Jaynes [26]; Bernardo [27]; Berger et al. [28]).

The proposed method is outlined in Figure 1. For each of the numerator and the
denominator of the Bayes factor, the proposed method first uses a model with
uninformative prior hyperparameter values, then updates the model using the sample
data from an examiner and thereby arrives at posterior hyperparameter values for the
model for that examiner. The means of the posterior hyperparameter values from a
group of examiners are then used as the prior hyperparameter values for another
examiner who was not a member of that group — for the purpose of the demonstration

In the present paper, leave-one-out cross-validation is used.
<Figure 1 about here>

Figure 1. Outline of proposed method.

In the proposed method, the statistical model used for both the numerator and the
denominator of the Bayes factor is a beta-binomial model.® Previous uses of beta-
binomial models in forensic inference include Cereda [31] in DNA-profile comparison,
Rosas et al. [32] in speaker recognition, Song et al. [33] in firearms examination, and
Kadane [34] in document examination. For the beta-binomial model, the parameter of

interest, 5(RS|t)’ is the probability of response RS given the truth t, where the

subscript t is a placeholder for s or d (t = {s,d}) The likelihood of an observed

response count, C(RS|t) given n, opportunities for a response to occur, is modelled
by the binomial distribution Bin (C(R5|t)|9(R5|t),nt), and the conjugate prior is

modelled by the beta distribution Beta (9(R5|t)|at, bt), in which a; and b, are the

® For introductions to the beta-binomial model, see Murphy [29] §3.3, and Banks & Tackett [30] §3.2.1.
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hyperparameters for the prior distribution. Via Bayes theorem, the posterior

distribution of the parameter 6 rg|), 9€RS|t)’ is proportional to the multiplication of

the prior distribution and the likelihood, and this simplifies to Beta (95‘R5|t)|a;,b;),

see Equation (2), in which ¢ rg¢) Is the count of responses that are not cggt)

given n, opportunities for a response to occur (C(R5|t) + C(aRS|t) = nt), and the

posterior hyperparameter values are a; = c(gs|¢) + @ and bi = c(gs|¢) + br.
(2)
p (QERSU;) |C(RS|t)» C(aRS|t) A bt)

o Bin (c(Rs1e) O(Rs|ey e ) Beta (Orsie | be)

be—1

x (9(R5|t))C(RS't) (1- 9(R5|t>)c(ﬂRS't) (“)(Rﬂt))ar1 (1-9rsit))

< (0qrsin) ®I (1~ 0qgsie) IO

« Beta (9€R5|t)|C(RS|t) + a, C(—|R5|t) + bt)

« Beta (HERSU,“) |a§, b{f)

The expected value of the posterior distribution of QERS|t) is Q_ERS|t)' This is

calculated as in Equation (3), in which m; = a; + b; is the prior pseudo number of
fingermark-fingerprint pairs of truth status t, and m; = n; + m; = a; + b; is the

posterior pseudo number of fingermark-fingerprint pairs of truth status t.

)
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1
O(RS|t) = JO O(Rs|tyBeta (9(Rs|o)|c(Rsie) + a0 €(Rs|e) + br) 0{Rs

C(RS|t) T At a4 aa
C(RS|t) +a; + C(—RS|t) +b, ng+my a;+b; mi

A Bayes factor, By, is then calculated as the ratio of the expected values of the

posterior distributions of 9€RS|5) and QERSId)’ as in Equation (4).

(4)

_ O(rsls) _ ai/m;
ORsd) %a/Ma

BRS

For uninformative priors, the proposed method uses hyperparameters as= bs=
ns/(ns+ny) and ay = by =ny/(ns+ny). If ng=ny, then the hyperparameters equal
those for Jeffreys’ reference priors: a = b = 0.5. If ng # ny, then the priors for the
numerator and denominator of the Bayes factor are weighted versions of Jeffreys’
reference priors. This weighting prevents the bias that would occur in the calculation
of the Bayes factor if unweighted Jeffreys’ reference priors were used (see Rosas et al.
[32] Appendix A). In the Langenburg et al. [22] data ng=7 and ny=5; hence for
the Langenburg et al. [22] data as=bs=ng/(ns+ny)=7/12 and ay3=by=
ng/(ms+ny) = 5/12.

In the present paper, for informative priors, a cross-validated procedure was adopted
whereby the data from one examiner in a group were held out, the posterior
hyperparameter values (a;, bs, aj, and bg) for each of the remaining examiners in
the group were calculated using uninformative priors as described above, then the
means of those posterior hyperparameter values across examiners (a%, b, aj,and bj)

were calculated,” and finally those mean values were used as the hyperparameter

7 If the n, and hence the m; values differed across examiners, a weighted mean could be used.
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values of the informative priors for the held-out examiner’s performance. The latter
values were substituted as the as, bs, a4, and by values in Equation (3) to calculate
the expected values of the posterior parameter distributions for the left-out examiner,
which in turn were substituted into Equation (4) to calculate the Bayes factor for the

left-out examiner.

3 Results

Table 2 shows example sample data from one examiner from Group 1. Figure 2 shows
a graphical representation of an example of the calculation of a Bayes factor B;p for
this examiner using uninformative priors (left panels) and informative priors (right
panels). The top panels represent the calculation of the numerators of the Bayes factors,

and the bottom panels represent the calculation of the denominators.

Table 2. Example sample data consisting of one examiner’s counts of “identification”,
“inconclusive”, an “exclusion” outputs in responses to same-source and different-

source fingermark-fingerprint pairs.

Response Number of pairs
identification inconclusive exclusion
same source c(IDJs) = > C(INjs) = 1 C(EX]s) = 1 ng =7
Truth
different source |  ¢(pjd) =0 caNyd) =1 CEX|d) = 4 ng =5

<Figure 2 about here>

Figure 2. Graphical representation of an example of the calculation of a Bayes factor
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B;p using uninformative priors, left panels (a) and (b), and informative priors, right
panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior

distributions. Solid vertical lines: expected values of posterior distributions.

Figure 2(a) represents the calculation of the numerator of the Bayes factor using
as,bs) =

Beta(9(1D|S)|7/12,7/12) (the dotted curve), the sample proportion

uninformative priors, including the prior distribution Beta(e(lms)

C(ID\s)/nS=5/7 (the dashed wvertical line), the posterior distribution

Beta (6(p(s)|as b:) = Beta (81pys)| 5/7 + 7/12,2/7+7/12) =

Beta (QE‘ID|S)|5.58,2.58) (the solid curve), and the expected value of the posterior
distribution Q_EID|s) = a;/m; = 5.58/8.27 = 0.684 (the solid vertical line).
Similarly, Figure 2(b) represents the calculation of the denominator of the Bayes factor

using uninformative priors, including the prior distribution Beta (9(1D|d)|ad' bd) =

Beta (9(1D|d)| 5/12,5/12), the sample proportion C(ID|d)/nd =0/5, the posterior
distribution  Beta (8{pqy| @i ba) = Beta (6(1pyay| 0/5 +7/12,5/5 +5/12) =

Beta (HE‘IDld)|O.417,5.42), and the expected value of the posterior distribution
é(*ID|d) = ay/my = 0.417/5.83 = 0.0714 . The resulting Bayes-factor value is

The hyperparameters for the informative priors were calculated as the means of the
posterior hyperparameter values for all the other examiners in Group 1, with each of

those examiners’ posterior hyperparameter values calculated using their response data
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and uninformative priors. This resulted in informative prior hyperparameter values of
as=4.93, bs=3.24, a3=0.591, and by=5.24. Figure 2(c) represents the

calculation of the numerator of the Bayes factor using informative priors, including the

prior distribution Beta (9(1D|s) as,bs) = Beta (9(1D|s)|4-93'3-24) , the sample

proportion C(ID\s)/nS =5/7 , the posterior distribution Beta (9€ID|s) as, b;*) =
Beta (6(p(s)| 5/7 +4.93,2/7 + 3.24) = Beta (0(1pjs)[9.93,5.24) , and the
expected value of the posterior distribution Q_EID|s) =a;/m; =9.93/15.2 = 0.655.
Similarly, Figure 2(d) represents the calculation of the denominator of the Bayes factor,

including the prior distribution Beta (9(1D|d)|ad» bd) = Beta (9(1D|d)|0-591' 5.24),

the sample proportion C(ID|d)/nd:0/5 , the posterior distribution

Beta (01| @i ba) = Beta (8{1p;ay| 0/5 + 0.591,5/5 + 5.24) =

Beta (QE‘ID|d)|O.591,10.2), and the expected value of the posterior distribution
éEID|d) = ay/my = 0.591/10.8 = 0.0545 . The resulting Bayes-factor value is

For this example, as detailed above, the B;p values calculated using uninformative
priors and informative priors were 9.57 and 12.0 respectively. Figure 3 shows a
graphical representation of an example of the calculation of Bjy for the same
examiner. The By Vvalues calculated using uninformative priors and informative
priors were 1/1.25 and 1.22 respectively. Figure 4 shows a graphical representation of
an example of the calculation of Bgyx for the same examiner. The Bgx values
calculated using uninformative priors and informative priors were 1/3.91 and 1/5.75

respectively.®

8 By convention, values have been reported to 3 significant figures. Given the small data set, the resolution of the Bayes-

factor values is probably not meaningful past 1 significant figure.
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<Figure 3 about here>

Figure 3. Graphical representation of an example of the calculation of a Bayes factor
B;n using uninformative priors, left panels (a) and (b), and informative priors, right
panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior

distributions. Solid vertical lines: expected values of posterior distributions.
<Figure 4 about here>

Figure 4. Graphical representation of an example of the calculation of a Bayes factor
Bex using uninformative priors, left panels (a) and (b), and informative priors, right
panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior

distributions. Solid vertical lines: expected values of posterior distributions.

Figure 5 shows Bayes-factor values calculated for each examiner in Group 1. The left
panel, panel (a), shows the Bayes-factor values calculated using uninformative priors
and the right panel, panel (b), shows the Bayes-factor values calculated using
informative priors. Bayes-factor values are plotted using a base-2 logarithmic scale: A
log. Bayes-factor value of +1 is a Bayes-factor value of 2, a log. Bayes-factor value of
+2 is a Bayes-factor value of 4, log> Bayes-factor value of +3 is a Bayes-factor value
of 8, etc., and a log. Bayes-factor value of —1 is a Bayes-factor value of 1/2, a log:
Bayes-factor value of —2 is a Bayes-factor value of 1/4, log. Bayes-factor value of —3
Is a Bayes-factor value of 1/8, etc. A log. Bayes-factor value of O is a Bayes-factor

value of 1.

<Figure 5 about here>
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Figure 5. Swarm chart of Bayes-factor values for each examiner in Group 1. (a) using

uninformative priors. (b) using informative priors.

Compared to using uninformative priors, using informative priors resulted in tighter
grouping of examiners’ Bayes-factor values for each of B;p, By, and Bgx. Also, on
average across examiners, using informative priors resulted in larger B;p values and

smaller Bgyx values.

Using informative priors, “identification” responses converted to relatively large Bip
values in favour of the same-source hypothesis, “inconclusive” responses converted to
relatively small By Vvalues in favour of the same-source hypothesis, and “exclusion”
responses converted to relatively large Bgx values in favour of the different-source
hypothesis. Note that, for a substantial proportion of examiners, “inconclusive”
responses did not correspond to a neutral strength of evidence, they did not result in

B;n Values of approximately 1, they resulted in By Vvalues somewhat above 1.

The maximum and minimum Bayes-factor values were constrained by the number of

fingermark-fingerprint pairs.

Using uninformative priors, the largest B;p value obtained was 13 and the smallest
Bex Vvalue obtained was 1/13. These are the maximum and minimum values that could
be obtained using 12 fingermark-fingerprint pairs. If an examiner had both B;p = 13
and Bgx = 1/13, this was the result of perfect responses, i.e., “identification” in
response to all same-source pairs, “exclusion” in response to all different-source pairs,
and no “inconclusive” responses. In general, the largest Bayes factor value that could
be obtained using this method with uninformative priors would be ng+n4+1 and

the smallest would be 1/(ns+ny+ 1).

Using informative priors, the largest B;p value obtained was 13.2 and the smallest
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Bex Vvalue obtained was 1/11.9. Theoretically, given the Langenburg et al. (2012) data,
the largest Bayes factor value that could have been obtained using informative priors
would have been 2(ng+ng)+1 =25, and the smallest would have been
1/(2(ng + ng) + 1) = 1/25, but this would have required perfect responses from all

participants.

4 Discussion

The present paper has proposed and demonstrated a method to convert traditional
fingerprint-examination conclusions to well-calibrated Bayes factors. The method
requires minimal changes to existing practice. Examiners continue to initially state
their ACE or ACE-V outputs as “identification”, “inconclusive”, and “exclusion”, and
a statistical model is then used to calculate the strength of evidence associated with

each of these outputs.

The demonstration used a convenient dataset of individual examiners’ ACE responses
to each of multiple fingermark-fingerprint pairs. In the context of a case, the system
which would have to be calibrated would be the system which is actually used to
calculate the strength of evidence associated with the questioned-source fingermark
and known-source fingerprint of interest in the case. If a system consisted of an
implementation of the ACE-V process by a particular primary examiner and a
particular secondary examiner, then that is the system that would have to be calibrated.
If the process used for casework involved comparison of multiple candidate
fingerprints with a fingermark (rather than a single print with a single mark), then that
would form part of the system that would have to be calibrated. If the processes used
for casework involved consideration by examiners of the scores output by an automatic
fingerprint identification system (AFIS), then that would form part of the system that

would have to be calibrated.
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The system would have to be calibrated under conditions reflecting the conditions of
the case under consideration. In order for the calculated Bayes-factor value to be
meaningful, the system would have to provide responses to fingermark-fingerprint
pairs for which the true same-source or different-source status is known and which are
sufficiently representative of the relevant population and sufficiently reflective of the
conditions of the case under consideration. Those responses could then be used to train
the statistical model. Decisions about whether fingermark-fingerprint pairs are
sufficiently representative of the relevant population and sufficiently reflective of the
conditions of the case under consideration require subjective judgement based on
subject-area expertise (Morrison et al. [23]). A key consideration will be the quality of
the fingermark. Ideally, examiners (and researchers with subject-area expertise) would
collaboratively define a limited number of commonly-encountered sets of conditions,
pairs of marks and prints reflecting each of those sets of conditions would be created,
and each system would provide responses to pairs from each set of conditions. In a
casework context, an examiner (or process involving multiple examiners) would assess
whether the fingermark-fingerprint pair was sufficiently similar to one of the sets of
conditions for which a model already exists, and, if so, would select the appropriate
model to use for the case. The examiner would then use the selected model to convert
the system’s “identification”, “inconclusive”, or “exclusion” output to the
corresponding Bayes-factor value. In casework, this conversion simply requires
looking up the sclected model’s Bayes-factor value corresponding to the chosen
categorical output. For a given system, examiners could be provided with a table of

conversion values for each output under each set of conditions.

The demonstration used a convenient dataset of individual examiners’ responses to
each of only 12 fingermark-fingerprint pairs. This resulted in constrained Bayes-factor
values, i.e., the maximum and minimum Bayes-factor values achievable could not be
very far from 1. This reflects the desired behaviour of a method for calculating Bayes
factors: To make stronger strength-of-evidence claims, one would need more evidence

to support those claims in the form of more correct responses to fingermark-fingerprint
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pairs, which would require more opportunities to give correct responses to fingermark-
fingerprint pairs. When the number of opportunities to give correct responses to
fingermark-fingerprint pairs is small, the strength-of-evidence claims that can
potentially be supported are weaker. In order to be able to potentially make stronger
strength-of-evidence claims in casework, the system to be calibrated would have to
provide responses to a large number of fingermark-fingerprint pairs for which the true
same-source or different-source status was known. This would have to be repeated for
each set of conditions for which one wanted to potentially make stronger strength-of-

evidence claims.

An advantage of the beta-binomial model is that training data do not have to be
provided all at once. Each time a response to a new pair is provided, the model can be
updated. A large number of responses could therefore be built up over a long period of
time. To train an initial model for a system under a set of conditions, one might initially
present the system with a relatively large number of pairs, but thereafter one could
institute periodic presentation of smaller numbers of pairs, or could present an ongoing
trickle of pairs. If a laboratory were using a quality-management process which
included blind testing, i.e., inserting tests into examiners’ workflows in such a way that
examiners do not know that they are tests, the system’s response to each such test could
be used to update the model. Over time, using periodic or trickle testing, the model
would better represent the system’s performance and would potentially support
stronger strength-of-evidence claims. If the system’s performance changed over time,
periodic or trickle testing would provide the data necessary to update the model to

reflect that change.

If examiners wanted to adopt an ordinal scale with more than three levels, or wanted
to adopt subjective assignment of continuous likelihood-ratio values, those ordinal or
continuous values could be calibrated using other statistical models. A commonly used
model for calibrating continuously-valued likelihood ratios (that can also be applied to

ordinal scales) is logistic regression (Brummer & du Preez [35]; Gonzalez-Rodriguez
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et al. [36]; Morrison [37], [38]; Morrison & Poh [39]).

The introduction of a method such as that proposed in the present paper could
potentially lead to a gradual change in practice. Examiners could potentially use the
method to inform their practice, e.g., feedback in the form of the Bayes-factor value
associated with each of the categorical outputs (“identification”, “inconclusive”,
“exclusion”) in each set of conditions could lead to examiners adjusting where they set
the categorical boundaries dependent upon the conditions. Examiners exposed to the
proposed method could also become accustomed to probabilistic reasoning and in the
future could be more willing to accept other probabilistic methods as useful tools to

assist them in assessing strength of evidence.
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