

A method to convert traditional fingerprint ACE / ACE-V outputs ("identification", "inconclusive", "exclusion") to Bayes factors

Author and affiliations:

Geoffrey Stewart Morrison^{1,2,*}

¹ Forensic Data Science Laboratory, Aston University, Birmingham, UK

² Forensic Evaluation Ltd, Birmingham, UK

*Corresponding author: G.S. Morrison, e-mail: geoff-morrison@forensic-evaluation.net

ORCID:

Geoffrey Stewart Morrison 0000-0001-8608-8207

Disclaimer:

All opinions expressed in the present paper are those of the author, and, unless explicitly stated otherwise, should not be construed as representing the policies or positions of any organizations with which the author is associated.

Declaration of competing interest:

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements:

This research was supported by Research England’s Expanding Excellence in England Fund as part of funding for the Aston Institute for Forensic Linguistics 2019–2023.

My thanks to William Morris and to Lisa J. Hall for comments on earlier versions of this paper. Any inadequacies are solely my responsibility.

Highlights

- Fingerprint examination conclusions
- Conversion of “identification”, “inconclusive”, “exclusion” to Bayes factors
- Beta-binomial model
- Uninformative priors
- Informative priors

1

2 **A method to convert traditional fingerprint ACE / ACE-V outputs**
3 (**“identification”, “inconclusive”, “exclusion”**) to Bayes factors

4

5 **Abstract**6 Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical
7 models, and empirical validation. The rate of adoption of the likelihood-ratio
8 framework by fingerprint practitioners appears to be near zero. A factor in the
9 reluctance to adopt the likelihood-ratio framework may be a perception that it would
10 require a radical change in practice. The present paper proposes a small step that would
11 require minimal changes to current practice. It proposes and demonstrates a method to
12 convert traditional fingerprint-examination outputs (“identification”, “inconclusive”,
13 and “exclusion”) to well-calibrated Bayes factors. The method makes use of a beta-
14 binomial model, and both uninformative and informative priors.15 **Keywords**

16 Bayes factor; Calibration; Evidence; Fingerprint; Interpretation; Likelihood ratio

17 **Abbreviations**

18 ACE – analysis, comparison, and evaluation

19 ACE-V – analysis, comparison, evaluation, and verification

20 ASB –Academy Standards Board (American Academy of Forensic Sciences)

21 B – Bayes factor

22 c – count

23 d – different source

24 DFSC – Defense Forensic Science Center of the United States Department of the Army

25 ENFSI – European Network of Forensic Science Institutes

26 EX – exclusion

27 ID – identification

28 IN – inconclusive

29 Λ – likelihood ratio

30 m – pseudo number of fingermark-fingerprint pairs

31 n – number of fingermark-fingerprint pairs

32 θ – probability

33 RS – response

34 s – same source

35 t – truth

36

37 **1 Introduction**

38 Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical
39 models, and empirical validation (Cole [1], [2]; Mnookin et al. [3]; Curran [4];
40 Morrison & Stoel [5]; Swofford et al. [6]). The rate of adoption of the likelihood-ratio
41 framework by fingerprint practitioners appears to be near zero (Bali et al. [7]; Cole &
42 Barno [8]). A factor in the reluctance to adopt the likelihood-ratio framework may be

43 a perception that it would require a radical change in practice. The present paper makes
44 a proposal that would require minimal changes to current practice. It proposes a method
45 to convert traditional fingerprint-examination outputs to well-calibrated Bayes factors.¹

46 In current fingerprint-examination practice, conclusions are most commonly reported
47 as “identification” (or “individualization”), “exclusion”, or “inconclusive” (Expert
48 Working Group on Human Factors in Latent Print Analysis [9]; Cole [2]; Thompson
49 et al. [10]; Forensic Science Regulator [11]). Traditionally, “identification”
50 corresponds to a posterior probability of 1 and “exclusion” to a posterior probability of
51 0, with “inconclusive” as a no-conclusion option rather than a probabilistic value
52 between 0 and 1.

53 Proposals have been made that keep the terms “identification” and “exclusion”, but
54 state them as the examiner’s opinion, rather than as facts, and redefine them to mean
55 probabilities very very close to but not exactly 1 and 0, e.g., United States Department
56 of Justice [12]: “‘Source identification’ is an examiner’s conclusion that two friction
57 ridge skin impressions originated from the same source. ... A ‘source identification’ is
58 the statement of an examiner’s opinion ... that the probability that the two impressions
59 were made by different sources is so small that it is negligible.” This approach has been
60 criticized in Expert Working Group on Human Factors in Latent Print Analysis [9] pp.
61 72–73, Cole [2], and Thompson et al. [10] pp. 60–62. The difference between the
62 original and revised definitions is negligible, and, without a change in nomenclature,
63 triers of fact and others are likely to continue interpreting “identification” and
64 “exclusion” on face value, i.e., as probabilities of 1 and 0. Knowing that a fingerprint
65 examiner’s opinion is that the mark and print came from the same source is of little
66 value unless one knows the probability that the practitioner would opine that the mark
67 and print came from the same source if they really did come from the same source
68 versus the probability that the practitioner would opine that the mark and print came

¹ Bayes factors are the Bayesian analogues of likelihood ratios.

69 from the same source if they actually came from different sources (President's Council
70 of Advisors on Science and Technology [13]; Morrison et al. [14]).

71 Proposals have also been made to move away from the three-level ("identification",
72 "inconclusive", "exclusion") opinion scale and adopt ordinal opinion scales with more
73 levels, e.g., in the most recent publicly released (November 2021) draft of the ASB 013
74 Standard for Friction Ridge Examination Conclusions.² That draft claims to have a 5-
75 level opinion scale, but it actually has 9 levels. The levels are labelled: "source
76 identification", "inconclusive with similarities", "inconclusive", "inconclusive with
77 dissimilarities", and "source exclusion", but each of "inconclusive with similarities"
78 and "inconclusive with dissimilarities" is further divided into "weak", "moderate", and
79 "strong". The levels of the draft opinion scale are associated with verbal expressions
80 of degree of support for the same-source hypothesis relative to degree of support for
81 the different-source hypothesis, e.g., "the observed data provide more support for the
82 proposition that the impressions originated from different sources rather than the same
83 source". On their face, these "support" statements appear to be expressions of posterior
84 odds, but additional wording, e.g., "the examiner believes the observed data are more
85 probable if the impressions have different sources than the same source" suggests that
86 they are intended to be verbal expressions of likelihood ratios. The highest and lowest
87 levels of the opinion scale are, however, still labelled "identification" and "exclusion".
88 How an examiner is to evaluate strength of evidence in a way that would lead to the
89 selection of the appropriate level on the opinion scale is vague: "An examiner may
90 utilize their knowledge, training, and experience as well as a statistical model".³ The
91 ASB 013 draft has flaws, but it is clearly an attempt to move away from only stating
92 conclusions that are qualitative expressions of posterior probabilities that are (or are
93 very very close to) either 1 or 0. It is too early to tell whether there will be major

² https://www.aafs.org/sites/default/files/media/documents/013_Std_Ballot02.pdf

³ In a standard, a sentence with "may" gives permission. This sentence therefore states what examiners are permitted to do, not what they are recommended or required to do.

94 changes between the current draft and the final version of ASB 013, or whether the
95 final version will be widely adopted by examiners.

96 The European Network of Forensic Science Institutes (ENFSI) Guideline for
97 Evaluative Reporting in Forensic Science [15] recommends that forensic practitioners
98 subjectively assign a number between 0 and 1 for the numerator of a likelihood ratio,
99 subjectively assign a number between 0 and 1 for the denominator, then divide the
100 former by the latter. The ENFSI Guideline recommends that forensic practitioners
101 report the subjectively assigned numerical likelihood-ratio value and/or a
102 corresponding verbal expression from an ordinal opinion scale. Each level on the
103 opinion scale is associated with a range of numerical likelihood-ratio values, and each
104 level has an associated verbal expression of relative degrees of support for the
105 hypotheses and an associated verbal expression of a likelihood ratio. For example, the
106 numerical likelihood-ratio range 100–1000 is associated with the following verbal
107 expressions: “The forensic findings provide moderately strong support for the first
108 proposition relative to the alternative.” “The forensic findings are appreciably more
109 probable given one proposition relative to the other.” The ENFSI Guideline
110 recommends that a numerical likelihood-ratio value be subjectively assigned first and
111 that it then be converted to a verbal expression from a level on the ordinal opinion scale,
112 not the other way around.⁴ The recommendations of the ENFSI Guideline do not
113 appear to have been widely adopted by fingerprint examiners. Reporting of
114 uncalibrated and unvalidated subjective assignment of likelihood-ratio values has been
115 criticized in Thompson et al. [10] p. 65 and in Morrison et al. [18].

116 In 2017, the Defense Forensic Science Center (DFSC) of the United States Department
117 of the Army proposed that fingerprint examiners state their conclusions as subjectively-
118 assigned numerical likelihood-ratio values based on degree of correspondence between

⁴ If, instead of subjective assignment of a likelihood-ratio value, a likelihood-ratio value is calculated using relevant data, quantitative measurement, and statistical models, Marquis et al. [16], quoting Berger et al. [17], recommend that only the calculated number be reported.

119 the questioned-source fingermark and the known-source fingerprint: “The probability
120 of observing this amount of [corresponding ridge detail] is approximately ## times
121 greater when impressions are made by the same source rather than by different
122 sources.”⁵ In Swofford et al. [19], members of DFSC (in collaboration with others)
123 also proposed “FRStat”, a method for providing “statistical assessment of the strength
124 of fingerprint evidence” based on similarity scores calculated from comparisons of
125 minutiae annotations. FRStat has a passing resemblance to methods for calculating
126 likelihood-ratio values, but it calculates tail probabilities for similarity scores, not
127 likelihood ratios. The flaws with this approach are comprehensively described in
128 Neumann [20]. Results from FRStat and reporting using DFSC’s wording have been
129 tendered as evidence in US military courts and in at least one civilian case (Neumann
130 [20]; Swofford et al. [21]).

131 Part of the reluctance to adopt the likelihood-ratio framework for evaluation of forensic
132 evidence may be because of the perception that it would require a radical change in
133 practice. The present paper proposes a small step that would require minimal changes
134 to current practice. In this proposal, fingerprint examiners continue with their existing
135 practice and state ACE or ACE-V outputs as “identification”, “inconclusive”, or
136 “exclusion”. Those outputs are subsequently converted to well-calibrated Bayes factors
137 using a statistical model. The model is trained using data which consist of fingerprint
138 examiners’ “identification”, “inconclusive”, and “exclusion” responses to fingermark-
139 fingerprint pairs for which the true same-source or different-source status is known.
140 The statistical model could be applied to the output of an ACE process conducted by a
141 single fingerprint examiner, or could be applied to the output of an ACE-V process to
142 which two fingerprint examiners contribute. The present paper demonstrates use of the
143 statistical model for the ACE output of individual examiners. A separate model is
144 trained for each fingerprint examiner. The model is therefore calibrated to reflect the
145 strength of evidence associated with that fingerprint examiner stating each of the three

⁵ Quoted from Neumann [20].

146 outputs.

147 The scope of the present paper is modest. It describes and demonstrates a statistical
148 model as a proof of concept, and it discusses some considerations with respect to what
149 would be needed to transition the method into practice.

150

151 **2 Methodology**

152 **2.1 Data**

153 The data used for the proof of concept are taken from Langenburg et al. [22].
154 Participants gave “identification”, “inconclusive”, or “exclusion” responses to each of
155 12 fingermark-fingerprint pairs (7 same-source pairs and 5 different-source pairs). The
156 fingermark-fingerprint pairs were selected to be challenging.

157 Each participant was assigned to one of six groups. For the present study, we make use
158 of data from participants in Group 1, the control group, who performed their
159 examination as usual without being supplied with additional “tools”. For the present
160 paper, data from participants who were not practicing fingerprint examiners have been
161 excluded, leaving data from 24 participants.

162 For the purposes of the present paper, it is assumed that the fingermark-fingerprint
163 pairs in Langenburg et al. [22] all represented the same set of conditions, hence a
164 statistical model trained using these data can be generalized for use with other
165 fingermark-fingerprint pairs that also have that set of conditions. The conditions for a
166 case involve the quality of the fingermark and the quality of the fingerprint, but if
167 fingerprints are high-quality it is the quality of the fingermark that will be key in
168 defining the conditions for the case. Deciding whether data used for training (including
169 calibration) and for validation are sufficiently reflective of the conditions of a case
170 requires a subjective judgement which requires subject-area expertise, see the

171 Consensus on Validation of Forensic Voice Comparison (Morrison et al. [23]).

172 **2.2 A likelihood-ratio model**

173 Table 1 lists the symbols that that will be used to represent counts of each potential
 174 response to each truth value, i.e., counts of “identification”, “inconclusive”, or
 175 “exclusion” in response to whether fingermark-fingerprint pairs were same-source or
 176 different-source pairs. The symbol c represents a count, subscripts s and d
 177 represent the truth as to whether the pair was a same-source pair or a different-source
 178 pair respectively, and subscripts ID, IN, and EX represent whether an examiner’s
 179 response was “identification”, “inconclusive”, or “exclusion” respectively. n_s and n_d
 180 represent the number of same-source pairs and different-source pairs respectively. In
 181 the Langenburg et al. (2012) data $n_s = 7$ and $n_d = 5$.

182

183 **Table 1.** Symbols for counts of “identification”, “inconclusive”, or “exclusion”
 184 outputs in response to whether fingermark-fingerprint pairs were same-source or
 185 different-source pairs.

		Response			Number of pairs
		identification	inconclusive	exclusion	
Truth	same source	$c_{(ID s)}$	$c_{(IN s)}$	$c_{(EX s)}$	n_s
	different source	$c_{(ID d)}$	$c_{(IN d)}$	$c_{(EX d)}$	n_d

186

187 Given the response counts for an examiner, a likelihood-ratio value associated with
 188 each response category could be calculated as in Equation (1), in which Λ represents
 189 a likelihood ratio, $\hat{\theta}$ is an estimated probability value, and subscript RS (response) is
 190 a placeholder for ID, IN, or EX ($RS = \{ID, IN, EX\}$). The likelihood-ratio value is

191 calculated as the proportion of responses that are a particular response when the pair is
 192 a same-source pair divided by the proportion of responses that are that particular
 193 response when the pair is a different-source pair.

194 (1)

$$195 \quad \Lambda_{RS} = \frac{\hat{\theta}_{(RS|s)}}{\hat{\theta}_{(RS|d)}} = \frac{c_{(RS|s)}/n_s}{c_{(RS|d)}/n_d}$$

196 The responses are considered a sample of the population of potential responses, i.e., a
 197 population defined as all the responses that the examiner could potentially give to all
 198 fingermark-fingerprint pairs that have the same set of conditions (see §2.1). The sample
 199 is used to provide an estimate for what the likelihood-ratio value would be if one were
 200 able to calculate it using the entire population of data, i.e., it is an estimate of the
 201 examiner's theoretical underlying "true" performance under the tested conditions. A
 202 problem occurs, however, when the amount of sample data is small. For example, if an
 203 examiner responded "identification" to 1000 out of 10,000 different-source pairs then
 204 one would be confident that that practitioner's "true" false-alarm rate was very close
 205 to 10%. If an examiner responded "identification" to 1 out of 10 different-source pairs
 206 then one's best estimate for that practitioner's "true" false-alarm rate would be 10%,
 207 but one would have a lot of uncertainty about how close that estimate was to that
 208 examiner's "true" false-alarm rate. Another problem which occurs with small sample
 209 sizes is the high probability of obtaining a zero count, e.g., if the "true" false-alarm rate
 210 were 1% and the sample size were 10, then the probability of obtaining a zero count
 211 from a sample would be high. If there were a zero count in the numerator in Equation
 212 (1) then the calculated likelihood-ratio value would be 0, and if there were a zero count
 213 in the denominator then the calculated likelihood-ratio value would be infinite. A
 214 solution to these problems is to adopt a Bayesian approach and calculate a Bayes factor
 215 instead of a likelihood ratio (see §2.3).

216 **2.3 A Bayes-factor model**

217 Philosophically, in a frequentist approach, one attempts to calculate a probability or
218 likelihood value that is an estimate of a true but unknown value. In contrast, in a
219 Bayesian approach, probabilities and likelihoods are states of belief. A Bayesian begins
220 with a belief about the value of a statistical parameter of interest, observes sample data,
221 and based on the sample data they update their belief about the value of that parameter.
222 A rigorous Bayesian will justify their prior belief and will have prespecified the model
223 that they will use for representing and updating their belief (Jaynes [24] p. 373). If
224 others accept the justification for the prior and choice of model as reasonable then they
225 should also be willing to adopt for themselves the posterior belief about the parameter
226 value. The posterior is the result of a mixture of the prior and the sample data. If the
227 amount of sample data is large, the posterior depends heavily on the sample data, but
228 if the amount of sample data is small, the weight that the sample data contribute to the
229 posterior is less. If the amount of sample data is small, the weight contributed by the
230 prior is higher relative to the weight it contributes if the amount of sample data is large.
231 This provides a solution to the problems described above with respect to small sample
232 sizes. The priors, however, must be chosen and justified.

233 Priors can be “informative” or “uninformative”. Informative priors can be based on
234 existing relevant information. For example, if the performance of a fingerprint
235 examiner has not been previously tested under the conditions of interest, then a
236 reasonable informative prior could be based on the assumption that this examiner’s
237 performance is the same as the average of that of all examiners who have already been
238 tested under these particular conditions. Alternatively, if the performance of a
239 fingerprint examiner has not been previously tested under the conditions of interest but
240 the examiner has been tested under somewhat similar conditions, then a reasonable
241 informative prior could be based on the assumption that the examiner’s performance
242 on these particular conditions will be the same their performance on the somewhat
243 similar conditions under which they have already been tested. If no relevant
244 information is available, then an uninformative prior would be a reasonable choice. In
245 may be argued that no prior is completely uninformative, but there are relatively

246 uninformative “reference” priors (e.g., Jeffreys’ reference priors) whose use is
247 uncontroversial (Jeffreys [25]; Jaynes [26]; Bernardo [27]; Berger et al. [28]).

248 The proposed method is outlined in Figure 1. For each of the numerator and the
249 denominator of the Bayes factor, the proposed method first uses a model with
250 uninformative prior hyperparameter values, then updates the model using the sample
251 data from an examiner and thereby arrives at posterior hyperparameter values for the
252 model for that examiner. The means of the posterior hyperparameter values from a
253 group of examiners are then used as the prior hyperparameter values for another
254 examiner who was not a member of that group – for the purpose of the demonstration
255 in the present paper, leave-one-out cross-validation is used.

256 <Figure 1 about here>

257 **Figure 1.** Outline of proposed method.

258

259 In the proposed method, the statistical model used for both the numerator and the
260 denominator of the Bayes factor is a beta-binomial model.⁶ Previous uses of beta-
261 binomial models in forensic inference include Cereda [31] in DNA-profile comparison,
262 Rosas et al. [32] in speaker recognition, Song et al. [33] in firearms examination, and
263 Kadane [34] in document examination. For the beta-binomial model, the parameter of
264 interest, $\theta_{(RS|t)}$, is the probability of response RS given the truth t , where the
265 subscript t is a placeholder for s or d ($t = \{s, d\}$) The likelihood of an observed
266 response count, $c_{(RS|t)}$, given n_t opportunities for a response to occur, is modelled
267 by the binomial distribution $\text{Bin}\left(c_{(RS|t)} \mid \theta_{(RS|t)}, n_t\right)$, and the conjugate prior is
268 modelled by the beta distribution $\text{Beta}\left(\theta_{(RS|t)} \mid a_t, b_t\right)$, in which a_t and b_t are the

⁶ For introductions to the beta-binomial model, see Murphy [29] §3.3, and Banks & Tackett [30] §3.2.1.

269 hyperparameters for the prior distribution. Via Bayes theorem, the posterior
 270 distribution of the parameter $\theta_{(RS|t)}$, $\theta_{(RS|t)}^*$, is proportional to the multiplication of
 271 the prior distribution and the likelihood, and this simplifies to $\text{Beta}(\theta_{(RS|t)}^* | a_t^*, b_t^*)$,
 272 see Equation (2), in which $c_{(\neg RS|t)}$ is the count of responses that are not $c_{(RS|t)}$
 273 given n_t opportunities for a response to occur ($c_{(RS|t)} + c_{(\neg RS|t)} = n_t$), and the
 274 posterior hyperparameter values are $a_t^* = c_{(RS|t)} + a_t$ and $b_t^* = c_{(\neg RS|t)} + b_t$.

275 (2)

$$276 \quad p(\theta_{(RS|t)}^* | c_{(RS|t)}, c_{(\neg RS|t)}, a_t, b_t)$$

$$277 \quad \propto \text{Bin}(c_{(RS|t)} | \theta_{(RS|t)}, n_t) \text{Beta}(\theta_{(RS|t)} | a_t, b_t)$$

$$278 \quad \propto (\theta_{(RS|t)})^{c_{(RS|t)}} (1 - \theta_{(RS|t)})^{c_{(\neg RS|t)}} (\theta_{(RS|t)})^{a_t-1} (1 - \theta_{(RS|t)})^{b_t-1}$$

$$279 \quad \propto (\theta_{(RS|t)})^{c_{(RS|t)}+a_t-1} (1 - \theta_{(RS|t)})^{c_{(\neg RS|t)}+b_t-1}$$

$$280 \quad \propto \text{Beta}(\theta_{(RS|t)}^* | c_{(RS|t)} + a_t, c_{(\neg RS|t)} + b_t)$$

$$281 \quad \propto \text{Beta}(\theta_{(RS|t)}^* | a_t^*, b_t^*)$$

282 The expected value of the posterior distribution of $\theta_{(RS|t)}^*$ is $\bar{\theta}_{(RS|t)}^*$. This is
 283 calculated as in Equation (3), in which $m_t = a_t + b_t$ is the prior pseudo number of
 284 fingermark-fingerprint pairs of truth status t , and $m_t^* = n_t + m_t = a_t^* + b_t^*$ is the
 285 posterior pseudo number of fingermark-fingerprint pairs of truth status t .

286 (3)

287
$$\bar{\theta}_{(RS|t)}^* = \int_0^1 \theta_{(RS|t)}^* \text{Beta}(\theta_{(RS|t)}^* | c_{(RS|t)} + a_t, c_{(\neg RS|t)} + b_t) d\theta_{(RS|t)}^*$$

288
$$= \frac{c_{(RS|t)} + a_t}{c_{(RS|t)} + a_t + c_{(\neg RS|t)} + b_t} = \frac{a_t^*}{n_t + m_t} = \frac{a_t^*}{a_t^* + b_t^*} = \frac{a_t^*}{m_t^*}$$

289 A Bayes factor, B_{RS} , is then calculated as the ratio of the expected values of the
 290 posterior distributions of $\theta_{(RS|s)}^*$ and $\theta_{(RS|d)}^*$, as in Equation (4).

291 (4)

292
$$B_{RS} = \frac{\bar{\theta}_{(RS|s)}^*}{\bar{\theta}_{(RS|d)}^*} = \frac{a_s^*/m_s^*}{a_d^*/m_d^*}$$

293 For uninformative priors, the proposed method uses hyperparameters $a_s = b_s =$
 294 $n_s/(n_s+n_d)$ and $a_d = b_d = n_d/(n_s+n_d)$. If $n_s = n_d$, then the hyperparameters equal
 295 those for Jeffreys' reference priors: $a = b = 0.5$. If $n_s \neq n_d$, then the priors for the
 296 numerator and denominator of the Bayes factor are weighted versions of Jeffreys'
 297 reference priors. This weighting prevents the bias that would occur in the calculation
 298 of the Bayes factor if unweighted Jeffreys' reference priors were used (see Rosas et al.
 299 [32] Appendix A). In the Langenburg et al. [22] data $n_s = 7$ and $n_d = 5$; hence for
 300 the Langenburg et al. [22] data $a_s = b_s = n_s/(n_s+n_d) = 7/12$ and $a_d = b_d =$
 301 $n_d/(n_s+n_d) = 5/12$.

302 In the present paper, for informative priors, a cross-validated procedure was adopted
 303 whereby the data from one examiner in a group were held out, the posterior
 304 hyperparameter values (a_s^* , b_s^* , a_d^* , and b_d^*) for each of the remaining examiners in
 305 the group were calculated using uninformative priors as described above, then the
 306 means of those posterior hyperparameter values across examiners (\bar{a}_s^* , \bar{b}_s^* , \bar{a}_d^* , and \bar{b}_d^*)
 307 were calculated,⁷ and finally those mean values were used as the hyperparameter

⁷ If the n_t and hence the m_t^* values differed across examiners, a weighted mean could be used.

308 values of the informative priors for the held-out examiner's performance. The latter
 309 values were substituted as the a_s , b_s , a_d , and b_d values in Equation (3) to calculate
 310 the expected values of the posterior parameter distributions for the left-out examiner,
 311 which in turn were substituted into Equation (4) to calculate the Bayes factor for the
 312 left-out examiner.

313

314 **3 Results**

315 Table 2 shows example sample data from one examiner from Group 1. Figure 2 shows
 316 a graphical representation of an example of the calculation of a Bayes factor B_{ID} for
 317 this examiner using uninformative priors (left panels) and informative priors (right
 318 panels). The top panels represent the calculation of the numerators of the Bayes factors,
 319 and the bottom panels represent the calculation of the denominators.

320

321 **Table 2.** Example sample data consisting of one examiner's counts of "identification",
 322 "inconclusive", an "exclusion" outputs in responses to same-source and different-
 323 source fingermark-fingerprint pairs.

Truth	Response			Number of pairs
	identification	inconclusive	exclusion	
	same source	$c_{(ID S)} = 5$	$c_{(IN S)} = 1$	$c_{(EX S)} = 1$
different source	$c_{(ID d)} = 0$	$c_{(IN d)} = 1$	$c_{(EX d)} = 4$	$n_d = 5$

324

325 <Figure 2 about here>

326 **Figure 2.** Graphical representation of an example of the calculation of a Bayes factor

327 B_{ID} using uninformative priors, left panels (a) and (b), and informative priors, right
 328 panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
 329 bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
 330 prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior
 331 distributions. Solid vertical lines: expected values of posterior distributions.

332

333 Figure 2(a) represents the calculation of the numerator of the Bayes factor using
 334 uninformative priors, including the prior distribution $\text{Beta}(\theta_{(ID|S)} | a_s, b_s) =$
 335 $\text{Beta}(\theta_{(ID|S)} | 7/12, 7/12)$ (the dotted curve), the sample proportion
 336 $c_{(ID|S)}/n_s = 5/7$ (the dashed vertical line), the posterior distribution
 337 $\text{Beta}(\theta_{(ID|S)}^* | a_s^*, b_s^*) = \text{Beta}(\theta_{(ID|S)}^* | 5/7 + 7/12, 2/7 + 7/12) =$
 338 $\text{Beta}(\theta_{(ID|S)}^* | 5.58, 2.58)$ (the solid curve), and the expected value of the posterior
 339 distribution $\bar{\theta}_{(ID|S)}^* = a_s^*/m_s^* = 5.58/8.27 = 0.684$ (the solid vertical line).
 340 Similarly, Figure 2(b) represents the calculation of the denominator of the Bayes factor
 341 using uninformative priors, including the prior distribution $\text{Beta}(\theta_{(ID|d)} | a_d, b_d) =$
 342 $\text{Beta}(\theta_{(ID|d)} | 5/12, 5/12)$, the sample proportion $c_{(ID|d)}/n_d = 0/5$, the posterior
 343 distribution $\text{Beta}(\theta_{(ID|d)}^* | a_d^*, b_d^*) = \text{Beta}(\theta_{(ID|d)}^* | 0/5 + 7/12, 5/5 + 5/12) =$
 344 $\text{Beta}(\theta_{(ID|d)}^* | 0.417, 5.42)$, and the expected value of the posterior distribution
 345 $\bar{\theta}_{(ID|d)}^* = a_d^*/m_d^* = 0.417/5.83 = 0.0714$. The resulting Bayes-factor value is
 346 $B_{ID} = \bar{\theta}_{(ID|S)}^* / \bar{\theta}_{(ID|d)}^* = 0.684/0.0714 = 9.57$.

347 The hyperparameters for the informative priors were calculated as the means of the
 348 posterior hyperparameter values for all the other examiners in Group 1, with each of
 349 those examiners' posterior hyperparameter values calculated using their response data

350 and uninformative priors. This resulted in informative prior hyperparameter values of
 351 $a_s = 4.93$, $b_s = 3.24$, $a_d = 0.591$, and $b_d = 5.24$. Figure 2(c) represents the
 352 calculation of the numerator of the Bayes factor using informative priors, including the
 353 prior distribution $\text{Beta}(\theta_{(\text{ID}|s)} | a_s, b_s) = \text{Beta}(\theta_{(\text{ID}|s)} | 4.93, 3.24)$, the sample
 354 proportion $c_{(\text{ID}|s)}/n_s = 5/7$, the posterior distribution $\text{Beta}(\theta_{(\text{ID}|s)}^* | a_s^*, b_s^*) =$
 355 $\text{Beta}(\theta_{(\text{ID}|s)}^* | 5/7 + 4.93, 2/7 + 3.24) = \text{Beta}(\theta_{(\text{ID}|s)}^* | 9.93, 5.24)$, and the
 356 expected value of the posterior distribution $\bar{\theta}_{(\text{ID}|s)}^* = a_s^*/m_s^* = 9.93/15.2 = 0.655$.
 357 Similarly, Figure 2(d) represents the calculation of the denominator of the Bayes factor,
 358 including the prior distribution $\text{Beta}(\theta_{(\text{ID}|d)} | a_d, b_d) = \text{Beta}(\theta_{(\text{ID}|d)} | 0.591, 5.24)$,
 359 the sample proportion $c_{(\text{ID}|d)}/n_d = 0/5$, the posterior distribution
 360 $\text{Beta}(\theta_{(\text{ID}|d)}^* | a_d^*, b_d^*) = \text{Beta}(\theta_{(\text{ID}|d)}^* | 0/5 + 0.591, 5/5 + 5.24) =$
 361 $\text{Beta}(\theta_{(\text{ID}|d)}^* | 0.591, 10.2)$, and the expected value of the posterior distribution
 362 $\bar{\theta}_{(\text{ID}|d)}^* = a_d^*/m_d^* = 0.591/10.8 = 0.0545$. The resulting Bayes-factor value is
 363 $B_{\text{ID}} = \bar{\theta}_{(\text{ID}|s)}^* / \bar{\theta}_{(\text{ID}|d)}^* = 0.655/0.0545 = 12.0$.

364 For this example, as detailed above, the B_{ID} values calculated using uninformative
 365 priors and informative priors were 9.57 and 12.0 respectively. Figure 3 shows a
 366 graphical representation of an example of the calculation of B_{IN} for the same
 367 examiner. The B_{IN} values calculated using uninformative priors and informative
 368 priors were 1/1.25 and 1.22 respectively. Figure 4 shows a graphical representation of
 369 an example of the calculation of B_{EX} for the same examiner. The B_{EX} values
 370 calculated using uninformative priors and informative priors were 1/3.91 and 1/5.75
 371 respectively.⁸

⁸ By convention, values have been reported to 3 significant figures. Given the small data set, the resolution of the Bayes-factor values is probably not meaningful past 1 significant figure.

372 <Figure 3 about here>

373 **Figure 3.** Graphical representation of an example of the calculation of a Bayes factor
374 B_{IN} using uninformative priors, left panels (a) and (b), and informative priors, right
375 panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
376 bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
377 prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior
378 distributions. Solid vertical lines: expected values of posterior distributions.

379 <Figure 4 about here>

380 **Figure 4.** Graphical representation of an example of the calculation of a Bayes factor
381 B_{EX} using uninformative priors, left panels (a) and (b), and informative priors, right
382 panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and
383 bottom panels (b) and (d) represent the calculation of denominators. Dotted curves:
384 prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior
385 distributions. Solid vertical lines: expected values of posterior distributions.

386

387 Figure 5 shows Bayes-factor values calculated for each examiner in Group 1. The left
388 panel, panel (a), shows the Bayes-factor values calculated using uninformative priors
389 and the right panel, panel (b), shows the Bayes-factor values calculated using
390 informative priors. Bayes-factor values are plotted using a base-2 logarithmic scale: A
391 \log_2 Bayes-factor value of +1 is a Bayes-factor value of 2, a \log_2 Bayes-factor value of
392 +2 is a Bayes-factor value of 4, \log_2 Bayes-factor value of +3 is a Bayes-factor value
393 of 8, etc., and a \log_2 Bayes-factor value of -1 is a Bayes-factor value of 1/2, a \log_2
394 Bayes-factor value of -2 is a Bayes-factor value of 1/4, \log_2 Bayes-factor value of -3
395 is a Bayes-factor value of 1/8, etc. A \log_2 Bayes-factor value of 0 is a Bayes-factor
396 value of 1.

397 <Figure 5 about here>

398 **Figure 5.** Swarm chart of Bayes-factor values for each examiner in Group 1. (a) using
399 uninformative priors. (b) using informative priors.

400

401 Compared to using uninformative priors, using informative priors resulted in tighter
402 grouping of examiners' Bayes-factor values for each of B_{ID} , B_{IN} , and B_{EX} . Also, on
403 average across examiners, using informative priors resulted in larger B_{ID} values and
404 smaller B_{EX} values.

405 Using informative priors, "identification" responses converted to relatively large B_{ID}
406 values in favour of the same-source hypothesis, "inconclusive" responses converted to
407 relatively small B_{IN} values in favour of the same-source hypothesis, and "exclusion"
408 responses converted to relatively large B_{EX} values in favour of the different-source
409 hypothesis. Note that, for a substantial proportion of examiners, "inconclusive"
410 responses did not correspond to a neutral strength of evidence, they did not result in
411 B_{IN} values of approximately 1, they resulted in B_{IN} values somewhat above 1.

412 The maximum and minimum Bayes-factor values were constrained by the number of
413 fingermark-fingerprint pairs.

414 Using uninformative priors, the largest B_{ID} value obtained was 13 and the smallest
415 B_{EX} value obtained was 1/13. These are the maximum and minimum values that could
416 be obtained using 12 fingermark-fingerprint pairs. If an examiner had both $B_{ID} = 13$
417 and $B_{EX} = 1/13$, this was the result of perfect responses, i.e., "identification" in
418 response to all same-source pairs, "exclusion" in response to all different-source pairs,
419 and no "inconclusive" responses. In general, the largest Bayes factor value that could
420 be obtained using this method with uninformative priors would be $n_s + n_d + 1$ and
421 the smallest would be $1/(n_s + n_d + 1)$.

422 Using informative priors, the largest B_{ID} value obtained was 13.2 and the smallest

423 B_{EX} value obtained was 1/11.9. Theoretically, given the Langenburg et al. (2012) data,
424 the largest Bayes factor value that could have been obtained using informative priors
425 would have been $2(n_s + n_d) + 1 = 25$, and the smallest would have been
426 $1/(2(n_s + n_d) + 1) = 1/25$, but this would have required perfect responses from all
427 participants.

428

429 **4 Discussion**

430 The present paper has proposed and demonstrated a method to convert traditional
431 fingerprint-examination conclusions to well-calibrated Bayes factors. The method
432 requires minimal changes to existing practice. Examiners continue to initially state
433 their ACE or ACE-V outputs as “identification”, “inconclusive”, and “exclusion”, and
434 a statistical model is then used to calculate the strength of evidence associated with
435 each of these outputs.

436 The demonstration used a convenient dataset of individual examiners’ ACE responses
437 to each of multiple fingermark-fingerprint pairs. In the context of a case, the system
438 which would have to be calibrated would be the system which is actually used to
439 calculate the strength of evidence associated with the questioned-source fingermark
440 and known-source fingerprint of interest in the case. If a system consisted of an
441 implementation of the ACE-V process by a particular primary examiner and a
442 particular secondary examiner, then that is the system that would have to be calibrated.
443 If the process used for casework involved comparison of multiple candidate
444 fingerprints with a fingermark (rather than a single print with a single mark), then that
445 would form part of the system that would have to be calibrated. If the processes used
446 for casework involved consideration by examiners of the scores output by an automatic
447 fingerprint identification system (AFIS), then that would form part of the system that
448 would have to be calibrated.

449 The system would have to be calibrated under conditions reflecting the conditions of
450 the case under consideration. In order for the calculated Bayes-factor value to be
451 meaningful, the system would have to provide responses to fingermark-fingerprint
452 pairs for which the true same-source or different-source status is known and which are
453 sufficiently representative of the relevant population and sufficiently reflective of the
454 conditions of the case under consideration. Those responses could then be used to train
455 the statistical model. Decisions about whether fingermark-fingerprint pairs are
456 sufficiently representative of the relevant population and sufficiently reflective of the
457 conditions of the case under consideration require subjective judgement based on
458 subject-area expertise (Morrison et al. [23]). A key consideration will be the quality of
459 the fingermark. Ideally, examiners (and researchers with subject-area expertise) would
460 collaboratively define a limited number of commonly-encountered sets of conditions,
461 pairs of marks and prints reflecting each of those sets of conditions would be created,
462 and each system would provide responses to pairs from each set of conditions. In a
463 casework context, an examiner (or process involving multiple examiners) would assess
464 whether the fingermark-fingerprint pair was sufficiently similar to one of the sets of
465 conditions for which a model already exists, and, if so, would select the appropriate
466 model to use for the case. The examiner would then use the selected model to convert
467 the system’s “identification”, “inconclusive”, or “exclusion” output to the
468 corresponding Bayes-factor value. In casework, this conversion simply requires
469 looking up the selected model’s Bayes-factor value corresponding to the chosen
470 categorical output. For a given system, examiners could be provided with a table of
471 conversion values for each output under each set of conditions.

472 The demonstration used a convenient dataset of individual examiners’ responses to
473 each of only 12 fingermark-fingerprint pairs. This resulted in constrained Bayes-factor
474 values, i.e., the maximum and minimum Bayes-factor values achievable could not be
475 very far from 1. This reflects the desired behaviour of a method for calculating Bayes
476 factors: To make stronger strength-of-evidence claims, one would need more evidence
477 to support those claims in the form of more correct responses to fingermark-fingerprint

478 pairs, which would require more opportunities to give correct responses to fingermark-
479 fingerprint pairs. When the number of opportunities to give correct responses to
480 fingermark-fingerprint pairs is small, the strength-of-evidence claims that can
481 potentially be supported are weaker. In order to be able to potentially make stronger
482 strength-of-evidence claims in casework, the system to be calibrated would have to
483 provide responses to a large number of fingermark-fingerprint pairs for which the true
484 same-source or different-source status was known. This would have to be repeated for
485 each set of conditions for which one wanted to potentially make stronger strength-of-
486 evidence claims.

487 An advantage of the beta-binomial model is that training data do not have to be
488 provided all at once. Each time a response to a new pair is provided, the model can be
489 updated. A large number of responses could therefore be built up over a long period of
490 time. To train an initial model for a system under a set of conditions, one might initially
491 present the system with a relatively large number of pairs, but thereafter one could
492 institute periodic presentation of smaller numbers of pairs, or could present an ongoing
493 trickle of pairs. If a laboratory were using a quality-management process which
494 included blind testing, i.e., inserting tests into examiners' workflows in such a way that
495 examiners do not know that they are tests, the system's response to each such test could
496 be used to update the model. Over time, using periodic or trickle testing, the model
497 would better represent the system's performance and would potentially support
498 stronger strength-of-evidence claims. If the system's performance changed over time,
499 periodic or trickle testing would provide the data necessary to update the model to
500 reflect that change.

501 If examiners wanted to adopt an ordinal scale with more than three levels, or wanted
502 to adopt subjective assignment of continuous likelihood-ratio values, those ordinal or
503 continuous values could be calibrated using other statistical models. A commonly used
504 model for calibrating continuously-valued likelihood ratios (that can also be applied to
505 ordinal scales) is logistic regression (Brümmner & du Preez [35]; González-Rodríguez

506 et al. [36]; Morrison [37], [38]; Morrison & Poh [39]).

507 The introduction of a method such as that proposed in the present paper could
508 potentially lead to a gradual change in practice. Examiners could potentially use the
509 method to inform their practice, e.g., feedback in the form of the Bayes-factor value
510 associated with each of the categorical outputs (“identification”, “inconclusive”,
511 “exclusion”) in each set of conditions could lead to examiners adjusting where they set
512 the categorical boundaries dependent upon the conditions. Examiners exposed to the
513 proposed method could also become accustomed to probabilistic reasoning and in the
514 future could be more willing to accept other probabilistic methods as useful tools to
515 assist them in assessing strength of evidence.

516

517 5 References

518 [1] Cole S.A. (2006). Is fingerprint identification valid? Rhetorics of reliability in
519 fingerprint proponents’ discourse. *Law & Policy*, 28, 109–135.
520 <https://doi.org/10.1111/j.1467-9930.2005.00219.x>

521 [2] Cole S.A. (2014). Individualization is dead, long live individualization! Reforms
522 of reporting practices for fingerprint analysis in the United States. *Law,*
523 *Probability and Risk*, 13, 117–150. <https://doi.org/10.1093/lpr/mgt014>

524 [3] Mnookin J.L., Cole S.A., Dror I.E., Fisher B.A.J., Houck M.M., Inman K., Kaye
525 D.H., Koehler J.J., Langenburg G., Risinger D.M., Rudin N., Siegel J., Stoney
526 D.A. (2011). The need for a research culture in the forensic sciences. *UCLA Law*
527 *Review*, 58, 725–777.

528 [4] Curran J.M. (2013). Is forensic science the last bastion of resistance against
529 statistics? *Science and Justice*, 53, 251–252.
530 <http://dx.doi.org/10.1016/j.scijus.2013.07.001>

531 [5] Morrison G.S., Stoel R.D. (2014). Forensic strength of evidence statements
532 should preferably be likelihood ratios calculated using relevant data, quantitative
533 measurements, and statistical models – a response to Lennard (2013) Fingerprint
534 identification: How far have we come? *Australian Journal of Forensic Sciences*,
535 46, 282–292. <http://dx.doi.org/10.1080/00450618.2013.833648>

536 [6] Swofford H., Cole S., King V. (2021). Mt. Everest – we are going to lose many:
537 A survey of fingerprint examiners' attitudes towards probabilistic reporting.
538 *Law, Probability and Risk*, 19, 255–291. <https://doi.org/10.1093/lpr/mgab003>

539 [7] Bali A.S., Edmond G., Ballantyne K.N., Kemp R.I., Martire K.A. (2020).
540 Communicating forensic science opinion: An examination of expert reporting
541 practices. *Science & Justice*, 60, 216–224.
542 <https://doi.org/10.1016/j.scijus.2019.12.005>

543 [8] Cole S.A., Barno M. (2020). Probabilistic reporting in criminal cases in the
544 United States: A baseline study. *Science & Justice*, 60, 406–414.
545 <https://doi.org/10.1016/j.scijus.2020.06.001>

546 [9] Expert Working Group on Human Factors in Latent Print Analysis (2012).
547 *Latent Print Examination and Human Factors: Improving the Practice through
548 a Systems Approach*. Gaithersburg, MD: National Institute of Standards and
549 Technology. <https://doi.org/10.6028/NIST.IR.7842>

550 [10] Thompson W.C., Black J., Jain A., Kadane J. (2017). *Forensic Science
551 Assessments: A Quality and Gap Analysis- Latent Fingerprint Examination*.
552 Washington, DC: American Association for the Advancement of Science.
553 <https://doi.org/10.1126/srhrl.aag2874>

554 [11] Forensic Science Regulator (2020). *Codes of practice and conduct: Friction
555 ridge detail (fingerprint) comparison* (FSR-C-128 Issue3). Birmingham, UK:
556 Forensic Science Regulator for England & Wales.

557 <https://www.gov.uk/government/publications/fingerprint-comparison>

558 [12] United States Department of Justice (2020). *Uniform Language for Testimony*
559 *and Reports for the Forensic Latent Print Discipline.*
560 <https://www.justice.gov/olp/uniform-language-testimony-and-reports>

561 [13] President's Council of Advisors on Science and Technology (2016). *Forensic*
562 *Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison*
563 *Methods.*
564 [https://obamawhitehouse.archives.gov/
565 administration/eop/ostp/pcast/docsreports/](https://obamawhitehouse.archives.gov/administration/eop/ostp/pcast/docsreports/)

566 [14] Morrison G.S., Kaye D.H., Balding D.J., Taylor D., Dawid P., Aitken C.G.G.,
567 Gittelson S., Zadora G., Robertson B., Willis S.M., Pope S., Neil M., Martire
568 K.A., Hepler A., Gill R.D., Jamieson A., de Zoete J., Ostrum R.B., Caliebe A.
569 (2017). A comment on the PCAST report: Skip the “match”/“non-match” stage.
570 *Forensic Science International*, 272, e7–e9.
571 <http://dx.doi.org/10.1016/j.forsciint.2016.10.018>

572 [15] Willis S.M., McKenna L., McDermott S., O'Donell G., Barrett A., Rasmusson
573 A., Nordgaard A., Berger C.E.H., Sjerps M.J., Lucena-Molina J.J., Zadora G.,
574 Aitken C.G.G., Lunt L., Champod C., Biedermann A., Hicks T.N., Taroni F.
575 (2015). *ENFSI Guideline for Evaluative Reporting in Forensic Science.*
576 http://enfsi.eu/wp-content/uploads/2016/09/m1_guideline.pdf

577 [16] Marquis R., Biedermann A., Cadola L., Champod C., Gueissaz L., Massonnet
578 G., Mazzella W.D., Taroni F., Hicks T. (2016). Discussion on how to implement
579 a verbal scale in a forensic laboratory: Benefits, pitfalls and suggestions to avoid
580 misunderstandings. *Science & Justice*, 56, 364–370.
581 <http://dx.doi.org/10.1016/j.scijus.2016.05.009>

582 [17] Berger C.E.H., Buckleton J., Champod C., Evett I.W., Jackson G. (2011).

583 Evidence evaluation: a response to the court of appeal judgment in *R v T.*
584 *Science & Justice*, 51, 43–49. <https://doi.org/10.1016/j.scijus.2011.03.005>

585 [18] Morrison G.S., Ballantyne K., Geoghegan P.H. (2018). A response to Marquis et
586 al (2017) What is the error margin of your signature analysis? *Forensic Science*
587 *International*, 287, e11–e12. <https://doi.org/10.1016/j.forsciint.2018.03.009>

588 [19] Swofford H.J., Koertner A.J., Zemp F., Ausdemore M.A., Liu A., Salyards M.J.
589 (2018). A method for the statistical interpretation of friction ridge skin
590 impression evidence: Method development and validation. *Forensic Science*
591 *International*, 287, 113–126. <https://doi.org/10.1016/j.forsciint.2018.03.043>

592 [20] Neumann C. (2020). Defence against the modern arts: The curse of statistics:
593 Part I –FRStat. *Law, Probability and Risk*, 19, 1–20.
594 <http://dx.doi.org/10.1093/lpr/mgaa004>

595 [21] Swofford H.J., Zemp F., Liu A., Salyards M.J. (2020). Letter to the Editors
596 regarding Neumann, C. ‘Defence against the modern arts: the curse of statistics:
597 Part 1 – FRStat.’ *Law, Probability and Risk*, 19, 1–20.
598 <https://doi.org/10.1093/lpr/mgaa014>

599 [22] Langenburg G., Champod C., Genessay T. (2012). Informing the judgements of
600 fingerprint analysts using quality metric and statistical assessment tools.
601 *Forensic Science International*, 219, 183–198.
602 <http://dx.doi.org/10.1016/j.forsciint.2011.12.017>

603 [23] Morrison G.S., Enzinger E., Hughes V., Jessen M., Meuwly D., Neumann C.,
604 Planting S., Thompson W.C., van der Vloed D., Ypma R.J.F., Zhang C.,
605 Anonymous A., Anonymous B. (2021). Consensus on validation of forensic
606 voice comparison. *Science & Justice*, 61, 229–309.
607 <https://doi.org/10.1016/j.scijus.2021.02.002>

608 [24] Jaynes E.T. (2003). *Probability Theory: The Logic of Science*. Cambridge UK:
609 Cambridge University Press.

610 [25] Jeffreys H. (1946). An invariant form for the prior probability in estimation
611 problems. *Proceedings of the Royal Society of London. Series A, Mathematical*
612 *and Physical Sciences*, 186, 453–461.
613 <https://doi.org/10.1098%2Frspa.1946.0056>

614 [26] Jaynes E.T. (1968). Prior probabilities. *IEEE Transactions on Systems Science*
615 *and Cybernetics*, 4, 227–291. <https://doi.org/10.1109/TSSC.1968.300117>

616 [27] Bernardo J.M. (1979). Reference posterior distributions for Bayesian inference.
617 *Journal of the Royal Statistical Society Series B*, 41, 113–147.

618 [28] Berger J.O., Bernardo J.M., Sun D. (2009). The formal definition of reference
619 priors. *Annals of Statistics*, 37, 905–938. <http://dx.doi.org/10.1214/07-AOS587>

620 [29] Murphy K.P. (2012). Machine Learning: A Probabilistic Perspective.
621 Cambridge, MA: MIT.

622 [30] Banks D., Tackett M. (2020). Bayesian methods and forensic inference. In
623 Banks D., Kafadar K., Kaye D.H., Tackett M. (Eds.), *Handbook of Forensic*
624 *Statistics* (pp. 73–90). Boca Raton, FL: CRC.
625 <https://doi.org/10.1201/9780367527709>

626 [31] Cereda G. (2017). Bayesian approach to LR assessment in case of rare type
627 match. *Statistica Neerlandica*, 71, 141–164. <https://doi.org/10.1111/stan.12104>

628 [32] Rosas C., Sommerhoff J., Morrison G.S. (2019). A method for calculating the
629 strength of evidence associated with an earwitness's claimed recognition of a
630 familiar speaker. *Science & Justice*, 59, 585–596.
631 <https://doi.org/10.1016/j.scijus.2019.07.001>

632 [33] Song J., Chen Z., Vorburger T.V., Soons J.A. (2020). Evaluating likelihood ratio
633 (LR) for firearm evidence identifications in forensic science based on the
634 Congruent Matching Cells (CMC) method. *Forensic Science International*, 317,
635 article 110502. <https://doi.org/10.1016/j.forsciint.2020.110502>

636 [34] Kadane J.B. (2021). Comparing two probabilities: An essay in honour of
637 Herman Chernoff. *Law, Probability and Risk*, 20, 37–43.
638 <https://doi.org/10.1093/lpr/mgab006>

639 [35] Brümmer N., du Preez J. (2006). Application independent evaluation of speaker
640 detection. *Computer Speech and Language*, 20, 230–275.
641 <https://doi.org/10.1016/j.csl.2005.08.001>

642 [36] González-Rodríguez J., Rose P., Ramos D., Toledano D.T., Ortega-García J.
643 (2007). Emulating DNA: Rigorous quantification of evidential weight in
644 transparent and testable forensic speaker recognition. *IEEE Transactions on
645 Audio, Speech, and Language Processing*, 15, 2104–2115.
646 <https://doi.org/10.1109/TASL.2007.902747>

647 [37] Morrison G.S. (2013). Tutorial on logistic-regression calibration and fusion:
648 Converting a score to a likelihood ratio. *Australian Journal of Forensic
649 Sciences*, 45, 173–197. <http://dx.doi.org/10.1080/00450618.2012.733025>

650 [38] Morrison G.S. (2021). In the context of forensic casework, are there meaningful
651 metrics of the degree of calibration? *Forensic Science International: Synergy*, 3,
652 100157. <https://doi.org/10.1016/j.fsisyn.2021.100157>

653 [39] Morrison G.S., Poh N. (2018). Avoiding overstating the strength of forensic
654 evidence: Shrunk likelihood ratios / Bayes factors. *Science & Justice*, 58, 200–
655 218. <http://dx.doi.org/10.1016/j.scijus.2017.12.005>









