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 1 

A method to convert traditional fingerprint ACE / ACE-V outputs 2 

(“identification”, “inconclusive”, “exclusion”) to Bayes factors 3 

 4 

Abstract 5 

Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical 6 

models, and empirical validation. The rate of adoption of the likelihood-ratio 7 

framework by fingerprint practitioners appears to be near zero. A factor in the 8 

reluctance to adopt the likelihood-ratio framework may be a perception that it would 9 

require a radical change in practice. The present paper proposes a small step that would 10 

require minimal changes to current practice. It proposes and demonstrates a method to 11 

convert traditional fingerprint-examination outputs (“identification”, “inconclusive”, 12 

and “exclusion”) to well-calibrated Bayes factors. The method makes use of a beta-13 

binomial model, and both uninformative and informative priors. 14 

Keywords 15 

Bayes factor; Calibration; Evidence; Fingerprint; Interpretation; Likelihood ratio 16 

Abbreviations 17 

ACE – analysis, comparison, and evaluation 18 

ACE-V – analysis, comparison, evaluation, and verification 19 

ASB –Academy Standards Board (American Academy of Forensic Sciences) 20 

Β – Bayes factor 21 

𝑐 – count 22 
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d – different source 23 

DFSC – Defense Forensic Science Center of the United States Department of the Army 24 

ENFSI – European Network of Forensic Science Institutes 25 

EX – exclusion 26 

ID – identification 27 

IN – inconclusive 28 

Λ – likelihood ratio 29 

𝑚 – pseudo number of fingermark-fingerprint pairs 30 

𝑛 – number of fingermark-fingerprint pairs 31 

θ – probability 32 

RS – response 33 

s – same source 34 

t – truth 35 

 36 

1 Introduction 37 

Fingerprint examiners appear to be reluctant to adopt probabilistic reasoning, statistical 38 

models, and empirical validation (Cole [1], [2]; Mnookin et al. [3]; Curran [4]; 39 

Morrison & Stoel [5]; Swofford et al. [6]). The rate of adoption of the likelihood-ratio 40 

framework by fingerprint practitioners appears to be near zero (Bali et al. [7]; Cole & 41 

Barno [8]). A factor in the reluctance to adopt the likelihood-ratio framework may be 42 
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a perception that it would require a radical change in practice. The present paper makes 43 

a proposal that would require minimal changes to current practice. It proposes a method 44 

to convert traditional fingerprint-examination outputs to well-calibrated Bayes factors.1  45 

In current fingerprint-examination practice, conclusions are most commonly reported 46 

as “identification” (or “individualization”), “exclusion”, or “inconclusive” (Expert 47 

Working Group on Human Factors in Latent Print Analysis [9]; Cole [2]; Thompson 48 

et al. [10]; Forensic Science Regulator [11]). Traditionally, “identification” 49 

corresponds to a posterior probability of 1 and “exclusion” to a posterior probability of 50 

0, with “inconclusive” as a no-conclusion option rather than a probabilistic value 51 

between 0 and 1.  52 

Proposals have been made that keep the terms “identification” and “exclusion”, but 53 

state them as the examiner’s opinion, rather than as facts, and redefine them to mean 54 

probabilities very very close to but not exactly 1 and 0, e.g., United States Department 55 

of Justice [12]: “‘Source identification’ is an examiner’s conclusion that two friction 56 

ridge skin impressions originated from the same source. ... A ‘source identification’ is 57 

the statement of an examiner’s opinion ... that the probability that the two impressions 58 

were made by different sources is so small that it is negligible.” This approach has been 59 

criticized in Expert Working Group on Human Factors in Latent Print Analysis [9] pp. 60 

72–73, Cole [2], and Thompson et al. [10] pp. 60–62. The difference between the 61 

original and revised definitions is negligible, and, without a change in nomenclature, 62 

triers of fact and others are likely to continue interpreting “identification” and 63 

“exclusion” on face value, i.e., as probabilities of 1 and 0. Knowing that a fingerprint 64 

examiner’s opinion is that the mark and print came from the same source is of little 65 

value unless one knows the probability that the practitioner would opine that the mark 66 

and print came from the same source if they really did come from the same source 67 

versus the probability that the practitioner would opine that the mark and print came 68 

 
1 Bayes factors are the Bayesian analogues of likelihood ratios. 
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from the same source if they actually came from different sources (President’s Council 69 

of Advisors on Science and Technology [13]; Morrison et al. [14]).  70 

Proposals have also been made to move away from the three-level (“identification”, 71 

“inconclusive”, “exclusion”) opinion scale and adopt ordinal opinion scales with more 72 

levels, e.g., in the most recent publicly released (November 2021) draft of the ASB 013 73 

Standard for Friction Ridge Examination Conclusions.2 That draft claims to have a 5-74 

level opinion scale, but it actually has 9 levels. The levels are labelled: “source 75 

identification”, “inconclusive with similarities”, “inconclusive”, “inconclusive with 76 

dissimilarities”, and “source exclusion”, but each of “inconclusive with similarities” 77 

and “inconclusive with dissimilarities” is further divided into “weak”, “moderate”, and 78 

“strong”. The levels of the draft opinion scale are associated with verbal expressions 79 

of degree of support for the same-source hypothesis relative to degree of support for 80 

the different-source hypothesis, e.g., “the observed data provide more support for the 81 

proposition that the impressions originated from different sources rather than the same 82 

source”. On their face, these “support” statements appear to be expressions of posterior 83 

odds, but additional wording, e.g., “the examiner believes the observed data are more 84 

probable if the impressions have different sources than the same source” suggests that 85 

they are intended to be verbal expressions of likelihood ratios. The highest and lowest 86 

levels of the opinion scale are, however, still labelled “identification” and “exclusion”. 87 

How an examiner is to evaluate strength of evidence in a way that would lead to the 88 

selection of the appropriate level on the opinion scale is vague: “An examiner may 89 

utilize their knowledge, training, and experience as well as a statistical model”.3 The 90 

ASB 013 draft has flaws, but it is clearly an attempt to move away from only stating 91 

conclusions that are qualitative expressions of posterior probabilities that are (or are 92 

very very close to) either 1 or 0. It is too early to tell whether there will be major 93 

 
2 https://www.aafs.org/sites/default/files/media/documents/013_Std_Ballot02.pdf  

3 In a standard, a sentence with “may” gives permission. This sentence therefore states what examiners are permitted to 

do, not what they are recommended or required to do. 
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changes between the current draft and the final version of ASB 013, or whether the 94 

final version will be widely adopted by examiners.  95 

The European Network of Forensic Science Institutes (ENFSI) Guideline for 96 

Evaluative Reporting in Forensic Science [15] recommends that forensic practitioners 97 

subjectively assign a number between 0 and 1 for the numerator of a likelihood ratio, 98 

subjectively assign a number between 0 and 1 for the denominator, then divide the 99 

former by the latter. The ENFSI Guideline recommends that forensic practitioners 100 

report the subjectively assigned numerical likelihood-ratio value and/or a 101 

corresponding verbal expression from an ordinal opinion scale. Each level on the 102 

opinion scale is associated with a range of numerical likelihood-ratio values, and each 103 

level has an associated verbal expression of relative degrees of support for the 104 

hypotheses and an associated verbal expression of a likelihood ratio. For example, the 105 

numerical likelihood-ratio range 100–1000 is associated with the following verbal 106 

expressions: “The forensic findings provide moderately strong support for the first 107 

proposition relative to the alternative.” “The forensic findings are appreciably more 108 

probable given one proposition relative to the other.” The ENFSI Guideline 109 

recommends that a numerical likelihood-ratio value be subjectively assigned first and 110 

that it then be converted to a verbal expression from a level on the ordinal opinion scale, 111 

not the other way around.4 The recommendations of the ENFSI Guideline do not 112 

appear to have been widely adopted by fingerprint examiners. Reporting of 113 

uncalibrated and unvalidated subjective assignment of likelihood-ratio values has been 114 

criticized in Thompson et al. [10] p. 65 and in Morrison et al. [18].  115 

In 2017, the Defense Forensic Science Center (DFSC) of the United States Department 116 

of the Army proposed that fingerprint examiners state their conclusions as subjectively-117 

assigned numerical likelihood-ratio values based on degree of correspondence between 118 

 
4 If, instead of subjective assignment of a likelihood-ratio value, a likelihood-ratio value is calculated using relevant data, 

quantitative measurement, and statistical models, Marquis et al. [16], quoting Berger et al. [17], recommend that only the 

calculated number be reported. 
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the questioned-source fingermark and the known-source fingerprint: “The probability 119 

of observing this amount of [corresponding ridge detail] is approximately ## times 120 

greater when impressions are made by the same source rather than by different 121 

sources.”5 In Swofford et al. [19], members of DFSC (in collaboration with others) 122 

also proposed “FRStat”, a method for providing “statistical assessment of the strength 123 

of fingerprint evidence” based on similarity scores calculated from comparisons of 124 

minutiae annotations. FRStat has a passing resemblance to methods for calculating 125 

likelihood-ratio values, but it calculates tail probabilities for similarity scores, not 126 

likelihood ratios. The flaws with this approach are comprehensively described in 127 

Neumann [20]. Results from FRStat and reporting using DFSC’s wording have been 128 

tendered as evidence in US military courts and in at least one civilian case (Neumann 129 

[20]; Swofford et al. [21]). 130 

Part of the reluctance to adopt the likelihood-ratio framework for evaluation of forensic 131 

evidence may be because of the perception that it would require a radical change in 132 

practice. The present paper proposes a small step that would require minimal changes 133 

to current practice. In this proposal, fingerprint examiners continue with their existing 134 

practice and state ACE or ACE-V outputs as “identification”, “inconclusive”, or 135 

“exclusion”. Those outputs are subsequently converted to well-calibrated Bayes factors 136 

using a statistical model. The model is trained using data which consist of fingerprint 137 

examiners’ “identification”, “inconclusive”, and “exclusion” responses to fingermark-138 

fingerprint pairs for which the true same-source or different-source status in known. 139 

The statistical model could be applied to the output of an ACE process conducted by a 140 

single fingerprint examiner, or could be applied to the output of an ACE-V process to 141 

which two fingerprint examiners contribute. The present paper demonstrates use of the 142 

statistical model for the ACE output of individual examiners. A separate model is 143 

trained for each fingerprint examiner. The model is therefore calibrated to reflect the 144 

strength of evidence associated with that fingerprint examiner stating each of the three 145 

 
5 Quoted from Neumann [20]. 
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outputs.  146 

The scope of the present paper is modest. It describes and demonstrates a statistical 147 

model as a proof of concept, and it discusses some considerations with respect to what 148 

would be needed to transition the method into practice. 149 

 150 

2 Methodology 151 

2.1 Data 152 

The data used for the proof of concept are taken from Langenburg et al. [22]. 153 

Participants gave “identification”, “inconclusive”, or “exclusion” responses to each of 154 

12 fingermark-fingerprint pairs (7 same-source pairs and 5 different-source pairs). The 155 

fingermark-fingerprint pairs were selected to be challenging.  156 

Each participant was assigned to one of six groups. For the present study, we make use 157 

of data from participants in Group 1, the control group, who performed their 158 

examination as usual without being supplied with additional “tools”. For the present 159 

paper, data from participants who were not practicing fingerprint examiners have been 160 

excluded, leaving data from 24 participants. 161 

For the purposes of the present paper, it is assumed that the fingermark-fingerprint 162 

pairs in Langenburg et al. [22] all represented the same set of conditions, hence a 163 

statistical model trained using these data can be generalized for use with other 164 

fingermark-fingerprint pairs that also have that set of conditions. The conditions for a 165 

case involve the quality of the fingermark and the quality of the fingerprint, but if 166 

fingerprints are high-quality it is the quality of the fingermark that will be key in 167 

defining the conditions for the case. Deciding whether data used for training (including 168 

calibration) and for validation are sufficiently reflective of the conditions of a case 169 

requires a subjective judgement which requires subject-area expertise, see the 170 
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Consensus on Validation of Forensic Voice Comparison (Morrison et al. [23]).  171 

2.2 A likelihood-ratio model 172 

Table 1 lists the symbols that that will be used to represent counts of each potential 173 

response to each truth value, i.e., counts of “identification”, “inconclusive”, or 174 

“exclusion” in response to whether fingermark-fingerprint pairs were same-source or 175 

different-source pairs. The symbol 𝑐  represents a count, subscripts s  and d 176 

represent the truth as to whether the pair was a same-source pair or a different-source 177 

pair respectively, and subscripts ID, IN, and EX represent whether an examiner’s 178 

response was “identification”, “inconclusive”, or “exclusion” respectively. 𝑛s and 𝑛d 179 

represent the number of same-source pairs and different-source pairs respectively. In 180 

the Langenburg et al. (2012) data 𝑛s= 7 and 𝑛d = 5. 181 

 182 

Table 1. Symbols for counts of “identification”, “inconclusive”, or “exclusion” 183 

outputs in response to whether fingermark-fingerprint pairs were same-source or 184 

different-source pairs. 185 

  Response Number of pairs 

  identification inconclusive exclusion  

Truth 

same source 𝑐(ID|s) 𝑐(IN|s) 𝑐(EX|s) 𝑛s 

different source 𝑐(ID|d) 𝑐(IN|d) 𝑐(EX|d) 𝑛d 

 186 

Given the response counts for an examiner, a likelihood-ratio value associated with 187 

each response category could be calculated as in Equation (1), in which Λ represents 188 

a likelihood ratio, 𝜃 is an estimated probability value, and subscript 𝑅𝑆 (response) is 189 

a placeholder for ID, IN, or EX (𝑅𝑆 = {ID, IN, EX}). The likelihood-ratio value is 190 
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calculated as the proportion of responses that are a particular response when the pair is 191 

a same-source pair divided by the proportion of responses that are that particular 192 

response when the pair is a different-source pair.  193 

(1)  194 

Λ𝑅𝑆 =
𝜃(𝑅𝑆|s)

𝜃(𝑅𝑆|d)
=

𝑐(𝑅𝑆|s) 𝑛s⁄

𝑐(𝑅𝑆|d) 𝑛d⁄
 195 

The responses are considered a sample of the population of potential responses, i.e., a 196 

population defined as all the responses that the examiner could potentially give to all 197 

fingermark-fingerprint pairs that have the same set of conditions (see §2.1). The sample 198 

is used to provide an estimate for what the likelihood-ratio value would be if one were 199 

able to calculate it using the entire population of data, i.e., it is an estimate of the 200 

examiner’s theoretical underlying “true” performance under the tested conditions. A 201 

problem occurs, however, when the amount of sample data is small. For example, if an 202 

examiner responded “identification” to 1000 out of 10,000 different-source pairs then 203 

one would be confident that that practitioner’s “true” false-alarm rate was very close 204 

to 10%. If an examiner responded “identification” to 1 out of 10 different-source pairs 205 

then one’s best estimate for that practitioner’s “true” false-alarm rate would be 10%, 206 

but one would have a lot of uncertainty about how close that estimate was to that 207 

examiner’s “true” false-alarm rate. Another problem which occurs with small sample 208 

sizes is the high probability of obtaining a zero count, e.g., if the “true” false-alarm rate 209 

were 1% and the sample size were 10, then the probability of obtaining a zero count 210 

from a sample would be high. If there were a zero count in the numerator in Equation 211 

(1) then the calculated likelihood-ratio value would be 0, and if there were a zero count 212 

in the denominator then the calculated likelihood-ratio value would be infinite. A 213 

solution to these problems is to adopt a Bayesian approach and calculate a Bayes factor 214 

instead of a likelihood ratio (see §2.3). 215 

2.3 A Bayes-factor model 216 
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Philosophically, in a frequentist approach, one attempts to calculate a probability or 217 

likelihood value that is an estimate of a true but unknown value. In contrast, in a 218 

Bayesian approach, probabilities and likelihoods are states of belief. A Bayesian begins 219 

with a belief about the value of a statistical parameter of interest, observes sample data, 220 

and based on the sample data they update their belief about the value of that parameter. 221 

A rigorous Bayesian will justify their prior belief and will have prespecified the model 222 

that they will use for representing and updating their belief (Jaynes [24] p. 373). If 223 

others accept the justification for the prior and choice of model as reasonable then they 224 

should also be willing to adopt for themselves the posterior belief about the parameter 225 

value. The posterior is the result of a mixture of the prior and the sample data. If the 226 

amount of sample data is large, the posterior depends heavily on the sample data, but 227 

if the amount of sample data is small, the weight that the sample data contribute to the 228 

posterior is less. If the amount of sample data is small, the weight contributed by the 229 

prior is higher relative to the weight it contributes if the amount of sample data is large. 230 

This provides a solution to the problems described above with respect to small sample 231 

sizes. The priors, however, must be chosen and justified. 232 

Priors can be “informative” or “uninformative”. Informative priors can be based on 233 

existing relevant information. For example, if the performance of a fingerprint 234 

examiner has not been previously tested under the conditions of interest, then a 235 

reasonable informative prior could be based on the assumption that this examiner’s 236 

performance is the same as the average of that of all examiners who have already been 237 

tested under these particular conditions. Alternatively, if the performance of a 238 

fingerprint examiner has not been previously tested under the conditions of interest but 239 

the examiner has been tested under somewhat similar conditions, then a reasonable 240 

informative prior could be based on the assumption that the examiner’s performance 241 

on these particular conditions will be the same their performance on the somewhat 242 

similar conditions under which they have already been tested. If no relevant 243 

information is available, then an uninformative prior would be a reasonable choice. In 244 

may be argued that no prior is completely uninformative, but there are relatively 245 



ID-IN-EX to BF manuscript - 2022-08-26b Page 13 of 29 

uninformative “reference” priors (e.g., Jeffreys’ reference priors) whose use is 246 

uncontroversial (Jeffreys [25]; Jaynes [26]; Bernardo [27]; Berger et al. [28]).  247 

The proposed method is outlined in Figure 1. For each of the numerator and the 248 

denominator of the Bayes factor, the proposed method first uses a model with 249 

uninformative prior hyperparameter values, then updates the model using the sample 250 

data from an examiner and thereby arrives at posterior hyperparameter values for the 251 

model for that examiner. The means of the posterior hyperparameter values from a 252 

group of examiners are then used as the prior hyperparameter values for another 253 

examiner who was not a member of that group – for the purpose of the demonstration 254 

in the present paper, leave-one-out cross-validation is used.  255 

<Figure 1 about here> 256 

Figure 1. Outline of proposed method. 257 

 258 

In the proposed method, the statistical model used for both the numerator and the 259 

denominator of the Bayes factor is a beta-binomial model.6 Previous uses of beta-260 

binomial models in forensic inference include Cereda [31] in DNA-profile comparison, 261 

Rosas et al. [32] in speaker recognition, Song et al. [33] in firearms examination, and 262 

Kadane [34] in document examination. For the beta-binomial model, the parameter of 263 

interest, 𝜃(𝑅𝑆|𝑡) , is the probability of response 𝑅𝑆  given the truth 𝑡 , where the 264 

subscript 𝑡 is a placeholder for s or d (𝑡 = {s, d}) The likelihood of an observed 265 

response count, 𝑐(𝑅𝑆|𝑡), given 𝑛𝑡 opportunities for a response to occur, is modelled 266 

by the binomial distribution Bin (𝑐(𝑅𝑆|𝑡)|𝜃(𝑅𝑆|𝑡), 𝑛𝑡) , and the conjugate prior is 267 

modelled by the beta distribution Beta (𝜃(𝑅𝑆|𝑡)|𝑎𝑡 , 𝑏𝑡), in which 𝑎𝑡 and 𝑏𝑡 are the 268 

 
6 For introductions to the beta-binomial model, see Murphy [29] §3.3, and Banks & Tackett [30] §3.2.1. 
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hyperparameters for the prior distribution. Via Bayes theorem, the posterior 269 

distribution of the parameter 𝜃(𝑅𝑆|𝑡), 𝜃(𝑅𝑆|𝑡)
∗ , is proportional to the multiplication of 270 

the prior distribution and the likelihood, and this simplifies to Beta (𝜃
(𝑅𝑆|𝑡)
∗ |𝑎𝑡

∗, 𝑏𝑡
∗), 271 

see Equation (2), in which 𝑐(¬𝑅𝑆|𝑡) is the count of responses that are not 𝑐(𝑅𝑆|𝑡) 272 

given 𝑛𝑡 opportunities for a response to occur (𝑐(𝑅𝑆|𝑡) + 𝑐(¬𝑅𝑆|𝑡) = 𝑛𝑡), and the 273 

posterior hyperparameter values are 𝑎𝑡
∗ = 𝑐(𝑅𝑆|𝑡) + 𝑎𝑡 and 𝑏𝑡

∗ = 𝑐(¬𝑅𝑆|𝑡) + 𝑏𝑡. 274 

(2)  275 

𝑝 (𝜃
(𝑅𝑆|𝑡)
∗ |𝑐(𝑅𝑆|𝑡), 𝑐(¬𝑅𝑆|𝑡), 𝑎𝑡 , 𝑏𝑡) 276 

∝ Bin (𝑐(𝑅𝑆|𝑡)|𝜃(𝑅𝑆|𝑡), 𝑛𝑡) Beta (𝜃(𝑅𝑆|𝑡)|𝑎𝑡 , 𝑏𝑡) 277 

∝ (𝜃(𝑅𝑆|𝑡))
𝑐
(𝑅𝑆|𝑡) (1 − 𝜃(𝑅𝑆|𝑡))

𝑐
(¬𝑅𝑆|𝑡) (𝜃(𝑅𝑆|𝑡))

𝑎𝑡−1
(1 − 𝜃(𝑅𝑆|𝑡))

𝑏𝑡−1
 278 

∝ (𝜃(𝑅𝑆|𝑡))
𝑐
(𝑅𝑆|𝑡)+𝑎𝑡−1 (1 − 𝜃(𝑅𝑆|𝑡))

𝑐
(¬𝑅𝑆|𝑡)+𝑏𝑡−1

 279 

∝ Beta (𝜃
(𝑅𝑆|𝑡)
∗ |𝑐(𝑅𝑆|𝑡) + 𝑎𝑡 , 𝑐(¬𝑅𝑆|𝑡) + 𝑏𝑡) 280 

∝ Beta (𝜃
(𝑅𝑆|𝑡)
∗ |𝑎𝑡

∗, 𝑏𝑡
∗) 281 

The expected value of the posterior distribution of 𝜃
(𝑅𝑆|𝑡)
∗  is 𝜃̅

(𝑅𝑆|𝑡)
∗ . This is 282 

calculated as in Equation (3), in which 𝑚𝑡 = 𝑎𝑡+𝑏𝑡 is the prior pseudo number of 283 

fingermark-fingerprint pairs of truth status 𝑡, and 𝑚𝑡
∗ = 𝑛𝑡 +𝑚𝑡 = 𝑎𝑡

∗ + 𝑏𝑡
∗  is the 284 

posterior pseudo number of fingermark-fingerprint pairs of truth status 𝑡. 285 

(3)  286 
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𝜃̅
(𝑅𝑆|𝑡)
∗ = ∫ 𝜃

(𝑅𝑆|𝑡)
∗ Beta (𝜃

(𝑅𝑆|𝑡)
∗ |𝑐(𝑅𝑆|𝑡) + 𝑎𝑡 , 𝑐(¬𝑅𝑆|𝑡) + 𝑏𝑡) 𝑑𝜃(𝑅𝑆|𝑡)

∗
1

0

287 

=
𝑐(𝑅𝑆|𝑡) + 𝑎𝑡

𝑐(𝑅𝑆|𝑡) + 𝑎𝑡 + 𝑐(¬𝑅𝑆|𝑡) + 𝑏𝑡
=

𝑎𝑡
∗

𝑛𝑡 +𝑚𝑡
=

𝑎𝑡
∗

𝑎𝑡
∗ + 𝑏𝑡

∗ =
𝑎𝑡
∗

𝑚𝑡
∗ 288 

A Bayes factor, Β𝑅𝑆 , is then calculated as the ratio of the expected values of the 289 

posterior distributions of 𝜃
(𝑅𝑆|s)
∗  and 𝜃

(𝑅𝑆|d)
∗ , as in Equation (4). 290 

(4)  291 

Β𝑅𝑆 =
𝜃̅
(𝑅𝑆|s)
∗

𝜃̅
(𝑅𝑆|d)
∗ =

𝑎s
∗ 𝑚s

∗⁄

𝑎d
∗ 𝑚d

∗⁄
 292 

For uninformative priors, the proposed method uses hyperparameters 𝑎s= 𝑏s =293 

𝑛s (𝑛s+𝑛d)⁄  and 𝑎d = 𝑏d = 𝑛d (𝑛s+𝑛d)⁄ . If 𝑛s =𝑛d, then the hyperparameters equal 294 

those for Jeffreys’ reference priors: 𝑎 = 𝑏 = 0.5. If 𝑛s ≠𝑛d, then the priors for the 295 

numerator and denominator of the Bayes factor are weighted versions of Jeffreys’ 296 

reference priors. This weighting prevents the bias that would occur in the calculation 297 

of the Bayes factor if unweighted Jeffreys’ reference priors were used (see Rosas et al. 298 

[32] Appendix A). In the Langenburg et al. [22] data 𝑛s = 7 and 𝑛d = 5; hence for 299 

the Langenburg et al. [22] data 𝑎s = 𝑏s= 𝑛s (𝑛s+𝑛d)⁄ = 7 12⁄  and 𝑎d = 𝑏d =300 

𝑛d (𝑛s+𝑛d)⁄ = 5 12⁄ . 301 

In the present paper, for informative priors, a cross-validated procedure was adopted 302 

whereby the data from one examiner in a group were held out, the posterior 303 

hyperparameter values (𝑎s
∗, 𝑏s

∗, 𝑎d
∗ , and 𝑏d

∗) for each of the remaining examiners in 304 

the group were calculated using uninformative priors as described above, then the 305 

means of those posterior hyperparameter values across examiners (𝑎̅s
∗, 𝑏̅s

∗, 𝑎̅d
∗ , and 𝑏̅d

∗) 306 

were calculated,7 and finally those mean values were used as the hyperparameter 307 

 
7 If the 𝑛𝑡 and hence the 𝑚𝑡

∗ values differed across examiners, a weighted mean could be used. 
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values of the informative priors for the held-out examiner’s performance. The latter 308 

values were substituted as the 𝑎s, 𝑏s, 𝑎d, and 𝑏d values in Equation (3) to calculate 309 

the expected values of the posterior parameter distributions for the left-out examiner, 310 

which in turn were substituted into Equation (4) to calculate the Bayes factor for the 311 

left-out examiner.  312 

 313 

3 Results 314 

Table 2 shows example sample data from one examiner from Group 1. Figure 2 shows 315 

a graphical representation of an example of the calculation of a Bayes factor ΒID for 316 

this examiner using uninformative priors (left panels) and informative priors (right 317 

panels). The top panels represent the calculation of the numerators of the Bayes factors, 318 

and the bottom panels represent the calculation of the denominators. 319 

 320 

Table 2. Example sample data consisting of one examiner’s counts of “identification”, 321 

“inconclusive”, an “exclusion” outputs in responses to same-source and different-322 

source fingermark-fingerprint pairs. 323 

  Response Number of pairs 

  identification inconclusive exclusion  

Truth 

same source 𝑐(ID|s) = 5 𝑐(IN|s) = 1 𝑐(EX|s) = 1 𝑛s = 7 

different source 𝑐(ID|d) = 0 𝑐(IN|d) = 1 𝑐(EX|d) = 4 𝑛d = 5 

 324 

<Figure 2 about here> 325 

Figure 2. Graphical representation of an example of the calculation of a Bayes factor 326 
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ΒID using uninformative priors, left panels (a) and (b), and informative priors, right 327 

panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and 328 

bottom panels (b) and (d) represent the calculation of denominators. Dotted curves: 329 

prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior 330 

distributions. Solid vertical lines: expected values of posterior distributions. 331 

 332 

Figure 2(a) represents the calculation of the numerator of the Bayes factor using 333 

uninformative priors, including the prior distribution Beta (𝜃(ID|s)|𝑎s, 𝑏s) =334 

Beta (𝜃(ID|s)| 7 12⁄ , 7 12⁄ )  (the dotted curve), the sample proportion 335 

𝑐
(ID|s) 𝑛s=⁄ 5 7⁄  (the dashed vertical line), the posterior distribution 336 

Beta (𝜃
(ID|s)
∗ |𝑎s

∗, 𝑏s
∗) = Beta (𝜃

(ID|s)
∗ | 5 7⁄ + 7 12⁄ , 2 7⁄ + 7 12⁄ ) =337 

Beta (𝜃
(ID|s)
∗ |5.58, 2.58) (the solid curve), and the expected value of the posterior 338 

distribution 𝜃̅
(ID|s)
∗ = 𝑎s

∗ 𝑚s
∗⁄ = 5.58 8.27⁄ = 0.684  (the solid vertical line). 339 

Similarly, Figure 2(b) represents the calculation of the denominator of the Bayes factor 340 

using uninformative priors, including the prior distribution Beta (𝜃(ID|d)|𝑎d, 𝑏d) =341 

Beta (𝜃(ID|d)| 5 12⁄ , 5 12⁄ ), the sample proportion 𝑐
(ID|d)

𝑛d=⁄ 0 5⁄ , the posterior 342 

distribution Beta (𝜃
(ID|d)
∗ |𝑎d

∗ , 𝑏d
∗) = Beta (𝜃

(ID|d)
∗ | 0 5⁄ + 7 12⁄ , 5 5⁄ + 5 12⁄ ) =343 

Beta (𝜃
(ID|d)
∗ |0.417, 5.42) , and the expected value of the posterior distribution 344 

𝜃̅
(ID|d)
∗ = 𝑎d

∗ 𝑚d
∗ = 0.417 5.83⁄⁄ = 0.0714 . The resulting Bayes-factor value is 345 

ΒID = 𝜃̅
(ID|s)
∗ 𝜃̅

(ID|d)
∗⁄ = 0.684 0.0714⁄ = 9.57.  346 

The hyperparameters for the informative priors were calculated as the means of the 347 

posterior hyperparameter values for all the other examiners in Group 1, with each of 348 

those examiners’ posterior hyperparameter values calculated using their response data 349 
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and uninformative priors. This resulted in informative prior hyperparameter values of 350 

𝑎s = 4.93 , 𝑏s= 3.24 , 𝑎d = 0.591 , and 𝑏d = 5.24 . Figure 2(c) represents the 351 

calculation of the numerator of the Bayes factor using informative priors, including the 352 

prior distribution Beta (𝜃(ID|s)|𝑎s, 𝑏s) = Beta (𝜃(ID|s)|4.93, 3.24) , the sample 353 

proportion 𝑐
(ID|s) 𝑛s=⁄ 5 7⁄ , the posterior distribution Beta (𝜃

(ID|s)
∗ |𝑎s

∗, 𝑏s
∗) =354 

Beta (𝜃
(ID|s)
∗ | 5 7⁄ + 4.93, 2 7⁄ + 3.24) = Beta (𝜃

(ID|s)
∗ |9.93, 5.24) , and the 355 

expected value of the posterior distribution 𝜃̅
(ID|s)
∗ = 𝑎s

∗ 𝑚s
∗⁄ = 9.93 15.2⁄ = 0.655. 356 

Similarly, Figure 2(d) represents the calculation of the denominator of the Bayes factor, 357 

including the prior distribution Beta (𝜃(ID|d)|𝑎d, 𝑏d) = Beta (𝜃(ID|d)|0.591, 5.24), 358 

the sample proportion 𝑐
(ID|d)

𝑛d =⁄ 0 5⁄ , the posterior distribution 359 

Beta (𝜃
(ID|d)
∗ |𝑎d

∗ , 𝑏d
∗) = Beta (𝜃

(ID|d)
∗ | 0 5⁄ + 0.591, 5 5⁄ + 5.24) =360 

Beta (𝜃
(ID|d)
∗ |0.591, 10.2) , and the expected value of the posterior distribution 361 

𝜃̅
(ID|d)
∗ = 𝑎d

∗ 𝑚d
∗⁄ = 0.591 10.8⁄ = 0.0545 . The resulting Bayes-factor value is 362 

ΒID = 𝜃̅
(ID|s)
∗ 𝜃̅

(ID|d)
∗⁄ = 0.655 0.0545⁄ = 12.0.  363 

For this example, as detailed above, the ΒID values calculated using uninformative 364 

priors and informative priors were 9.57 and 12.0 respectively. Figure 3 shows a 365 

graphical representation of an example of the calculation of ΒIN  for the same 366 

examiner. The ΒIN  values calculated using uninformative priors and informative 367 

priors were 1/1.25 and 1.22 respectively. Figure 4 shows a graphical representation of 368 

an example of the calculation of ΒEX  for the same examiner. The ΒEX  values 369 

calculated using uninformative priors and informative priors were 1/3.91 and 1/5.75 370 

respectively.8  371 

 
8 By convention, values have been reported to 3 significant figures. Given the small data set, the resolution of the Bayes-

factor values is probably not meaningful past 1 significant figure.  
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<Figure 3 about here> 372 

Figure 3. Graphical representation of an example of the calculation of a Bayes factor 373 

ΒIN using uninformative priors, left panels (a) and (b), and informative priors, right 374 

panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and 375 

bottom panels (b) and (d) represent the calculation of denominators. Dotted curves: 376 

prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior 377 

distributions. Solid vertical lines: expected values of posterior distributions. 378 

<Figure 4 about here> 379 

Figure 4. Graphical representation of an example of the calculation of a Bayes factor 380 

ΒEX using uninformative priors, left panels (a) and (b), and informative priors, right 381 

panels (c) and (d). Top panels (a) and (c) represent the calculation of numerators, and 382 

bottom panels (b) and (d) represent the calculation of denominators. Dotted curves: 383 

prior distributions. Dashed vertical lines: sample proportions. Solid curves: posterior 384 

distributions. Solid vertical lines: expected values of posterior distributions. 385 

 386 

Figure 5 shows Bayes-factor values calculated for each examiner in Group 1. The left 387 

panel, panel (a), shows the Bayes-factor values calculated using uninformative priors 388 

and the right panel, panel (b), shows the Bayes-factor values calculated using 389 

informative priors. Bayes-factor values are plotted using a base-2 logarithmic scale: A 390 

log2 Bayes-factor value of +1 is a Bayes-factor value of 2, a log2 Bayes-factor value of 391 

+2 is a Bayes-factor value of 4, log2 Bayes-factor value of +3 is a Bayes-factor value 392 

of 8, etc., and a log2 Bayes-factor value of −1 is a Bayes-factor value of 1/2, a log2 393 

Bayes-factor value of −2 is a Bayes-factor value of 1/4, log2 Bayes-factor value of −3 394 

is a Bayes-factor value of 1/8, etc. A log2 Bayes-factor value of 0 is a Bayes-factor 395 

value of 1. 396 

<Figure 5 about here> 397 
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Figure 5. Swarm chart of Bayes-factor values for each examiner in Group 1. (a) using 398 

uninformative priors. (b) using informative priors. 399 

 400 

Compared to using uninformative priors, using informative priors resulted in tighter 401 

grouping of examiners’ Bayes-factor values for each of ΒID, ΒIN, and ΒEX. Also, on 402 

average across examiners, using informative priors resulted in larger ΒID values and 403 

smaller ΒEX values.  404 

Using informative priors, “identification” responses converted to relatively large ΒID 405 

values in favour of the same-source hypothesis, “inconclusive” responses converted to 406 

relatively small ΒIN values in favour of the same-source hypothesis, and “exclusion” 407 

responses converted to relatively large ΒEX values in favour of the different-source 408 

hypothesis. Note that, for a substantial proportion of examiners, “inconclusive” 409 

responses did not correspond to a neutral strength of evidence, they did not result in 410 

ΒIN values of approximately 1, they resulted in ΒIN values somewhat above 1. 411 

The maximum and minimum Bayes-factor values were constrained by the number of 412 

fingermark-fingerprint pairs.  413 

Using uninformative priors, the largest ΒID value obtained was 13 and the smallest 414 

ΒEX value obtained was 1/13. These are the maximum and minimum values that could 415 

be obtained using 12 fingermark-fingerprint pairs. If an examiner had both ΒID = 13 416 

and ΒEX = 1 13⁄ , this was the result of perfect responses, i.e., “identification” in 417 

response to all same-source pairs, “exclusion” in response to all different-source pairs, 418 

and no “inconclusive” responses. In general, the largest Bayes factor value that could 419 

be obtained using this method with uninformative priors would be 𝑛s+𝑛d+1 and 420 

the smallest would be 1 (𝑛s+𝑛d+1)⁄ .  421 

Using informative priors, the largest ΒID value obtained was 13.2 and the smallest 422 
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ΒEX value obtained was 1/11.9. Theoretically, given the Langenburg et al. (2012) data, 423 

the largest Bayes factor value that could have been obtained using informative priors 424 

would have been 2(𝑛s + 𝑛d) + 1 = 25 , and the smallest would have been 425 

1 (2(𝑛s + 𝑛d) + 1)⁄ = 1 25⁄ , but this would have required perfect responses from all 426 

participants. 427 

 428 

4 Discussion 429 

The present paper has proposed and demonstrated a method to convert traditional 430 

fingerprint-examination conclusions to well-calibrated Bayes factors. The method 431 

requires minimal changes to existing practice. Examiners continue to initially state 432 

their ACE or ACE-V outputs as “identification”, “inconclusive”, and “exclusion”, and 433 

a statistical model is then used to calculate the strength of evidence associated with 434 

each of these outputs.  435 

The demonstration used a convenient dataset of individual examiners’ ACE responses 436 

to each of multiple fingermark-fingerprint pairs. In the context of a case, the system 437 

which would have to be calibrated would be the system which is actually used to 438 

calculate the strength of evidence associated with the questioned-source fingermark 439 

and known-source fingerprint of interest in the case. If a system consisted of an 440 

implementation of the ACE-V process by a particular primary examiner and a 441 

particular secondary examiner, then that is the system that would have to be calibrated. 442 

If the process used for casework involved comparison of multiple candidate 443 

fingerprints with a fingermark (rather than a single print with a single mark), then that 444 

would form part of the system that would have to be calibrated. If the processes used 445 

for casework involved consideration by examiners of the scores output by an automatic 446 

fingerprint identification system (AFIS), then that would form part of the system that 447 

would have to be calibrated. 448 
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The system would have to be calibrated under conditions reflecting the conditions of 449 

the case under consideration. In order for the calculated Bayes-factor value to be 450 

meaningful, the system would have to provide responses to fingermark-fingerprint 451 

pairs for which the true same-source or different-source status is known and which are 452 

sufficiently representative of the relevant population and sufficiently reflective of the 453 

conditions of the case under consideration. Those responses could then be used to train 454 

the statistical model. Decisions about whether fingermark-fingerprint pairs are 455 

sufficiently representative of the relevant population and sufficiently reflective of the 456 

conditions of the case under consideration require subjective judgement based on 457 

subject-area expertise (Morrison et al. [23]). A key consideration will be the quality of 458 

the fingermark. Ideally, examiners (and researchers with subject-area expertise) would 459 

collaboratively define a limited number of commonly-encountered sets of conditions, 460 

pairs of marks and prints reflecting each of those sets of conditions would be created, 461 

and each system would provide responses to pairs from each set of conditions. In a 462 

casework context, an examiner (or process involving multiple examiners) would assess 463 

whether the fingermark-fingerprint pair was sufficiently similar to one of the sets of 464 

conditions for which a model already exists, and, if so, would select the appropriate 465 

model to use for the case. The examiner would then use the selected model to convert 466 

the system’s “identification”, “inconclusive”, or “exclusion” output to the 467 

corresponding Bayes-factor value. In casework, this conversion simply requires 468 

looking up the selected model’s Bayes-factor value corresponding to the chosen 469 

categorical output. For a given system, examiners could be provided with a table of 470 

conversion values for each output under each set of conditions. 471 

The demonstration used a convenient dataset of individual examiners’ responses to 472 

each of only 12 fingermark-fingerprint pairs. This resulted in constrained Bayes-factor 473 

values, i.e., the maximum and minimum Bayes-factor values achievable could not be 474 

very far from 1. This reflects the desired behaviour of a method for calculating Bayes 475 

factors: To make stronger strength-of-evidence claims, one would need more evidence 476 

to support those claims in the form of more correct responses to fingermark-fingerprint 477 
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pairs, which would require more opportunities to give correct responses to fingermark-478 

fingerprint pairs. When the number of opportunities to give correct responses to 479 

fingermark-fingerprint pairs is small, the strength-of-evidence claims that can 480 

potentially be supported are weaker. In order to be able to potentially make stronger 481 

strength-of-evidence claims in casework, the system to be calibrated would have to 482 

provide responses to a large number of fingermark-fingerprint pairs for which the true 483 

same-source or different-source status was known. This would have to be repeated for 484 

each set of conditions for which one wanted to potentially make stronger strength-of-485 

evidence claims.  486 

An advantage of the beta-binomial model is that training data do not have to be 487 

provided all at once. Each time a response to a new pair is provided, the model can be 488 

updated. A large number of responses could therefore be built up over a long period of 489 

time. To train an initial model for a system under a set of conditions, one might initially 490 

present the system with a relatively large number of pairs, but thereafter one could 491 

institute periodic presentation of smaller numbers of pairs, or could present an ongoing 492 

trickle of pairs. If a laboratory were using a quality-management process which 493 

included blind testing, i.e., inserting tests into examiners’ workflows in such a way that 494 

examiners do not know that they are tests, the system’s response to each such test could 495 

be used to update the model. Over time, using periodic or trickle testing, the model 496 

would better represent the system’s performance and would potentially support 497 

stronger strength-of-evidence claims. If the system’s performance changed over time, 498 

periodic or trickle testing would provide the data necessary to update the model to 499 

reflect that change. 500 

If examiners wanted to adopt an ordinal scale with more than three levels, or wanted 501 

to adopt subjective assignment of continuous likelihood-ratio values, those ordinal or 502 

continuous values could be calibrated using other statistical models. A commonly used 503 

model for calibrating continuously-valued likelihood ratios (that can also be applied to 504 

ordinal scales) is logistic regression (Brümmer & du Preez [35]; González-Rodríguez 505 
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et al. [36]; Morrison [37], [38]; Morrison & Poh [39]).  506 

The introduction of a method such as that proposed in the present paper could 507 

potentially lead to a gradual change in practice. Examiners could potentially use the 508 

method to inform their practice, e.g., feedback in the form of the Bayes-factor value 509 

associated with each of the categorical outputs (“identification”, “inconclusive”, 510 

“exclusion”) in each set of conditions could lead to examiners adjusting where they set 511 

the categorical boundaries dependent upon the conditions. Examiners exposed to the 512 

proposed method could also become accustomed to probabilistic reasoning and in the 513 

future could be more willing to accept other probabilistic methods as useful tools to 514 

assist them in assessing strength of evidence. 515 

 516 
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