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What is Calibration?

« What is a well-calibrated set of scales?

e A set of scales for which: '
o

e The mass stated in the readout is the same as

N
the mass placed on the scale \_/
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What is Calibration?
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What is Calibration?

 What 1s a well-calibrated likelithood-ratio system?
« A system for which:

e The likelihood ratio of the likelihood ratio is the likelihood ratio

 f(LR|H,)
~ f(LR|H,)
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Perfectly calibrated likelihood ratios
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Perfectly calibrated likelihood ratios

 Perfectly calibrated In(LR) distributions
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Perfectly calibrated likelihood ratios

 Perfectly calibrated In(LR) distributions

o C, values
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Perfectly calibrated likelihood ratios

 Perfectly calibrated In(LR) distributions
o C, values

 Tippett plots
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Linear calibration
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Linear calibration 04l
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Linear calibration 04l
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Linear calibration _ofe =~ ] e
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Linear calibration

 Score [x] to In(LR) [y] mapping function:

y=a-+ bx

 Where u,, u,, o are the statistics for the scores
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Linear calibration

 Score [x] to In(LR) [y] mapping function:

y=a-+ bx

o In practice, logistic regression 1s commonly used to calculate a and b

e It 1s more robust to violations of the assumptions of Gaussian distributions with the same

variance
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Non-linear calibration

» Logistic-regression calibration applies a linear transformation 1n the log-likelihood-ratio

space.

« Unless the distributions of the different-source and same-source uncalibrated log

likelihood ratios are both Gaussian and have the same variance, the calibrated log

likelihood ratios could be far from a perfectly calibrated bi-Gaussian system.

» Bi-Gaussianized calibration applies a non-linear (but still monotonic) transformation
designed to bring the distributions closer to those of a perfectly-calibrated bi-Gaussian

system.
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Non-linear calibration

* kernel-density estimation (KDE)

e monotonicity not guaranteed

 pool adjacent violators (PAV), aka 1sotonic regression

o overfits training data
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Bi-Gaussianized calibration

1. Calculate uncalibrated log likelihood ratios (scores) for training data and test data.
2. Calibrate the training-data output of Step 1 using logistic regression.
3. Calculate C,, for the output of Step 2.

4. Determine the ¢ of the perfectly-calibrated bi-Gaussian system with the C, calculated at

Step 3.

5. Ignoring same-source and different-source labels, determine the mapping function from
the empirical cumulative distribution of the training-data output of Step 1 to the

cumulative distribution of the two-Gaussian mixture with the ¢° determined at Step 4.

6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.
19
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Relationship between C, and o’
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Bi-Gaussianized calibration
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Simulated data: Gaussians with same variance

e 100 same-source samples

* 4950 different-source samples
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Simulated data: Gaussians with same variance

o Cumulative probability 1 o target = 2.96
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Simulated data: Gaussians with same variance

« Mapping functions
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Simulated data: Gaussian & Gumbel with different variances
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Simulated data: Gaussian & Gumbel with different variances

« Cumulative probability

» with equal weight for
same-source set and

different-source set

o target = 3.65
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Simulated data: Gaussian & Gumbel with different variances

« Mapping functions
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Simulated data: Gaussian & Gumbel with different variances

* Probability density

functions

e training data
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Simulated data: Gaussian & Gumbel with different variances

* Probability density

functions

e test data
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Real data: forensic voice comparison

* forensic eval 01

benchmark data

« E’ Forensic Speech Science

System (E’FS)

Weber P., Enzinger E., Labrador B., Lozano-Diez
A., Ramos D., Gonzélez-Rodriguez J.,
Morrison G.S. (2022). Validation of the alpha
version of the E’ Forensic Speech Science
System (E'FS’) core software tools. Forensic
Science International: Synergy, 4, 100223.
https://doi.org/10.1016/j.fsisyn.2022.100223
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Real data: forensic voice comparison

« Cumulative probability

» with equal weight for
same-source set and
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Real data: forensic voice comparison

e Mapping functions

e cross-validated
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Real data: forensic voice comparison

* Probability density

functions

e cross-validated
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Real data: forensic voice comparison

 Tippett plots :
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Real data: glass

e glass scores from van Es et

al. (2017)

van Es A., Wiarda W., Hordijk M., Alberink I.,
Vergeer P. (2017). Implementation and
assessment of a likelihood ratio approach for
the evaluation of LA-ICP-MS evidence in
forensic glass analysis. Science & Justice, 57,
181-192.
https://doi.org/10.1016/j.sc1jus.2017.03.002
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Real data: glass

« Cumulative probability

» with equal weight for
same-source set and

different-source set
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Real data: glass

« Mapping functions

» cross-validated
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Real data: glass

* Mapping functions glass: o target = 6.02
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Real data: glass
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Real data: glass

 Tippett plots
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Conclusion

e If likelithood-ratio values are not calibrated:
o their absolute values cannot be interpreted

 they cannot be used in Bayes’ theorem to update prior odds to posterior odds

» Logistic-regression calibration produces results that can deviate quite far from perfect

calibration.

* Bi-Gaussininazed calibration produces results that are close to perfect calibration.
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Thank You

The likelihood ratio
of

the likelithood ratio
S

the likelihood ratio
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