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What is Calibration?

Ÿ What is a well-calibrated set of scales?

Ÿ A set of scales for which:

Ÿ The mass stated in the readout is the same as 

the mass placed on the scale



5

What is Calibration?

Ÿ Calibration is the process of 

adjusting the set of scales so 

that its output is well calibrated.
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Ÿ What is a well-calibrated likelihood-ratio system?

Ÿ A system for which:

Ÿ The likelihood ratio of the likelihood ratio is the likelihood ratio

LR =  
f ( LR | H  )s

f ( LR | H  )d

_________

What is Calibration?
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Perfectly calibrated likelihood ratios
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ Both same-source and different-source distributions 

are Gaussian, and they have the same variance
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ C  valuesllr
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Ÿ Perfectly calibrated ln(LR) distributions

Ÿ C  valuesllr

Ÿ Tippett plots
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Linear calibration
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Linear calibration
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Linear calibration

(c)

Calibrated ln(LR)
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Linear calibration

(c)

Calibrated ln(LR)
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Linear calibration

Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

b =  
μ  – μs d

2
σ

_____

Ÿ Where μ , μ , σ are the statistics for the scoress d

a = – b 
μ  + μs d

2
_____



16

Linear calibration

Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

Ÿ In practice, logistic regression is commonly used to calculate a and b 

Ÿ It is more robust to violations of the assumptions of Gaussian distributions with the same 

variance
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Non-linear calibration

Ÿ Logistic-regression calibration applies a linear transformation in the log-likelihood-ratio 

space.

Ÿ Unless the distributions of the different-source and same-source uncalibrated log 

likelihood ratios are both Gaussian and have the same variance, the calibrated log 

likelihood ratios could be far from a perfectly calibrated .bi-Gaussian system

Ÿ Bi-Gaussianized calibration applies a non-linear (but still monotonic) transformation 

designed to bring the distributions closer to those of a perfectly-calibrated bi-Gaussian 

system.
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Non-linear calibration

Ÿ kernel-density estimation (KDE)

Ÿ monotonicity not guaranteed

Ÿ pool adjacent violators (PAV), aka isotonic regression

Ÿ overfits training data
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1. Calculate uncalibrated log likelihood ratios (scores) for training data and test data.

2. Calibrate the training-data output of Step 1 using logistic regression.

3. Calculate  for the output of Step 2.Cllr

24. Determine the σ  of the perfectly-calibrated bi-Gaussian system with the  calculated at Cllr

Step 3.

5. Ignoring same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the 
2cumulative distribution of the two-Gaussian mixture with the σ  determined at Step 4.

6. Apply the mapping function determined at Step 5 to the test-data output of Step 1.

Bi-Gaussianized calibration
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2Relationship between C  and σ  llr
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Simulated data: Gaussians with same variance
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Simulated data: Gaussians with same variance

Ÿ Cumulative probability

Ÿ with equal weight for 

same-source set and 

different-source set
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Simulated data: Gaussians with same variance

Ÿ Mapping functions
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Simulated data: Gaussian & Gumbel with different variances

Ÿ 100 same-source samples

Ÿ 4950 different-source samples
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Simulated data: Gaussian & Gumbel with different variances

Ÿ Cumulative probability

Ÿ with equal weight for 

same-source set and 

different-source set
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Ÿ Mapping functions

Simulated data: Gaussian & Gumbel with different variances
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Ÿ Probability density 

functions

Ÿ training data

Simulated data: Gaussian & Gumbel with different variances
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Simulated data: Gaussian & Gumbel with different variances

Ÿ Probability density 

functions

Ÿ test data
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Real data: forensic voice comparison

Ÿ forensic_eval_01 

benchmark data

Ÿ
3E  Forensic Speech Science 

3 3System (E FS )
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Real data: forensic voice comparison
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Ÿ Mapping functions

Ÿ cross-validated

Real data: forensic voice comparison
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Real data: forensic voice comparison

Ÿ Probability density 

functions

Ÿ cross-validated
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Ÿ Tippett plots

Ÿ cross-validated

Real data: forensic voice comparison
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Real data: glass

Ÿ glass scores from van Es et 

al. (2017)

van Es A., Wiarda W., Hordijk M., Alberink I., 

Vergeer P. (2017). Implementation and 

assessment of a likelihood ratio approach for 

the evaluation of LA-ICP-MS evidence in 

forensic glass analysis. Science & Justice, 57, 

181–192. 
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Real data: glass
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Ÿ Mapping functions

Ÿ cross-validated

Real data: glass
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Ÿ Mapping functions

Ÿ cross-validated

Real data: glass
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Ÿ Probability density 

functions

Ÿ cross-validated

Real data: glass
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Ÿ Tippett plots

Ÿ cross-validated

Real data: glass
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Ÿ If likelihood-ratio values are not calibrated:

Ÿ their absolute values cannot be interpreted

Ÿ they cannot be used in Bayes’ theorem to update prior odds to posterior odds

Ÿ Logistic-regression calibration produces results that can deviate quite far from perfect 

calibration.

Ÿ Bi-Gaussininazed calibration produces results that are close to perfect calibration.

Conclusion
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Thank You

The likelihood ratio

of

the likelihood ratio 

is

the likelihood ratio
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